

George Mason University/Wilson Center's
Environmental Change and Security Program
and Brazil Institute
Managing our Forests Dialogue
Washington, DC April 20, 2011

Carbon Impact of Forest Degradation in the Tropics

Sandra Brown sbrown@winrock.org

Carbon impact of logging in tropical forests

•Timber extraction decreases the net stocks in live biomass and increases the stocks in dead wood &wood products

Magnitude of carbon emissions from logging in tropical regions

	Total			
Emissions		Timber	Incidental	Logging
Region	(Pg C yr-1)	Extraction	Damage	Infrastructure
Africa	0.05	53%	16%	31%
Latin America	0.11	52%	25%	23%
Asia	0.05	44%	31%	25%
Total	0.22	50%	25%	25%

- 0.22 Pg C = 0.8 billion metric tons carbon dioxide
- Equal to about 5% of fossil fuel emissions from developing countries
- Or up to 25% of emissions from tropical deforestation

Are there opportunities to reduce emissions?

 Need to know sources of emissions from each of the practices used in the logging operations

Estimating emissions from selective logging practices

C emissions, t C/yr = f[Vol_f, Vol_e, WD, LTP, LDF, LIF]

Where:

- ✓ Vol _f= volume felled and Vol_e = volume extracted, (m³/ha)
- \checkmark WD = wood density (t/m³)
- ✓LTP = proportion of extracted wood in long term products
- ✓ LDF =logging damage factor—dead mass left in gap (t CO_2/m^3)
- ✓LIF = logging infrastructure factor—dead mass from construction (t CO_2/m^3)

Quantify changes in live and dead C stocks

- Collect measurements on felled trees in logging gaps to estimate the loss of live C and the increase in dead C
- Use biomass allometric equations to estimate biomass of felled trees
- Relate measures to gap area and timber extracted

Extracted volumes

Estimate carbon in log based on volume and density

Tree fall damage

Measure diameter of collateral damaged trees and estimate carbon from application of allometric equation for each tree

Dead carbon (top) = total tree C minus C in logs

Estimating emissions from forest harvesting

 Relationship between timber volume extracted per gap and amount of dead wood produced (top and collateral)=LDF

- Develop such a relationship for local practices
- Equate damage to volume per unit area extracted

Comparison of logging damage across different countries

Emissions from infrastructure

Approach 1. damage caused by infrastructure

- •Use high resolution aerial imagery to estimate area and length of roads and skid trails and area of logging decks
- •Estimate proportion of total sample area covered by gaps for an independent measure of tree felled
- Relate infrastructure damage to volume extracted

Approach 2: damage caused by infrastructure

Logging decks

Obtain very high resolution satellite imagery (<60 cm resolution), and digitize length and area of structures Relate to area of active logging and timber extraction

What are the total emissions—Case study 1: Republic of Congo

Based on 98	Total carbon impact		Impact per ha of concession	
logging gaps	t C	95% CI	t C/ha	95% CI
Extracted biomass carbon	3,824	± 248	2.60	± 0.17
Damaged biomass carbon in logging gap	5,698	± 343	4.01	± 0.23
Damaged biomass carbon in skid trails	126	± 10	0.09	± 0.007
Biomass carbon impact of logging roads	3,194	± 598	2.17	± 0.41
TOTAL	13,042	± 1,199	8.9	± 0.81

=33 t CO₂/ha, or <1% of stock (~1,000 t CO₂/ha); and equivalent to 1,500 gallons of gas per acre logged

Cast study 2: East Kalimantan, Indonesia

Concession	Gaps	Retirement of long-term wood products	Total infrastructure	Total emissions t CO ₂ /ha
C1	75.4	36.1	92.0	203.5
C2	74.0	35.3	77.1	186.4
C3	68.2	34.0	90.5	192.8

- •Average total about 195 t CO₂/ha versus 33 t CO₂/ha for Africa
- •Total emissions are about 16% of the carbon stock of unlogged forest (1,180 t CO₂/ha) and 5.6 t CO₂/m³
- Some of this will be offset by annual regrowth in the logging gaps estimated to be about 3-6 t CO₂/ha per year
- For East Kalimantan, emissions equivalent to about 9,000 gal of gas per acre logged

Can emissions be reduced & removals enhanced by improved management?

- Reduce avoidable waste—
 - A merchantable amount equivalent to about 15-20% of the extracted volume is left behind in the forest as waste
 - If extracted could reduce need to cut as many trees to obtain same merchantable volume and thus reduce felled trees and skid trails (potential saving of about 19 t CO₂/ha for E. Kalimantan concessions)
 - Plan felling and map felled trees to make felled equal extracted,
 - Test for hollow logs before felling,
- Produce management plans so can plan allocation of tree felling operations and the location of the roads, skid trails, and decks to minimize damage to residual forest
- Investigate other options for pulling out logs to collection areas, e.g. cable systems
- Silvicultural treatments and enrichment planting in logging gaps to speed recovery

Thank You!

- Acknowledge: Colleagues Tim Pearson, Felipe Casarim, Sean Grimland, Sarah Walker, Bronson Griscom
- <u>Support</u>: US Agency for International Development (Patrick Smith CTO) and The Nature Conservancy
- For more information see:
 - http://www.winrock.org/Ecosystems/
- Or contact me:
 - sbrown@winrock.org