

University of Illinois

at Chicago

Significant Science Breakthrough Scenario

George Crabtree Argonne National Laboratory University of Illinois at Chicago

Societal issues

Energy security and predictability Climate change and carbon emissions Economic development and growth

Science breakthroughs

Hydraulic fracturing – shale gas
Mineralize carbon dioxide
Electricity storage beyond Li-ion
Recycle carbon dioxide to fuel
Safe, higher performing nuclear electricity

Interchangeable energy carriers electricity, chemical bonds, photons

Energy Transformation Takes Time

Societal Concerns to 2050

- Energy security, sustainability and predictability basic to personal, social, professional and civic life
- Climate change and carbon emissions avoid the human and economic cost
- Economic development and growth
 the natural aspiration of people and countries
 inexpensive, abundant energy
- International market to mediate across countries, regions and forms of energy regulates supply, demand and price provides interchangeable energy alternatives oil, gas, coal, biofuel, geothermal, solar, wind, and the means to produce them
 - oil, gas, coal, biofuel, geothermal, solar, wind, and the means to produce them Independent of geopolitical control over supply and price

Science Breakthroughs to Address Societal Concerns

Replace/displace coal and oil with abundant, cheap shale gas

Mitigate carbon emissions: mineralize carbon dioxide to, e.g., MgCO₃

Safe, higher performing nuclear electricity

Offshore wind with high capacity superconducting turbines

Sustainable energy carriers

Storage and transmission of electricity, for transportation and the grid Recycle carbon dioxide to chemical fuel

Break down barriers between energy carriers

Facile, efficient conversion among electricity, chemical fuel, photons Flexibility, versatility among energy sources and uses

Shale Gas and Hydraulic Fracturing

\$/MBTU

peak 05-08: \$12 non-peak 05-08: \$8 Jan 2012: \$2

Source: EIA

Potential Game Changer
carbon emissions
energy security
diversity of sources and uses

Hydraulic Fracturing Science Challenges

Operation

Distant horizontal drilling into thin shale layers
Local explosions fracture rock
High pressure hydraulic fluid opens fissures
Sand driven into fissures to prop open
Gas and oil flow out

Challenges

Flow of fluids in mesoporous rock
contamination of water, air
initial rush of gas
sharp decline in first year
only 15% of shale gas recovered

Source: Rachel Ehrenberg, Science News 182, 20 (2012)

Understand fissure mechanics, pore formation, fluid flow in fractured rock

Carbon Dioxide Mineralization

$$\begin{array}{c} {\rm MO+CO_2} \to {\rm MCO_3+energy} \\ {\rm Mg_2Si_2O_4+2CO_2} \to {\rm 2MgCO_3+SiO_2+\sim} \\ {\rm Also~Ca,~Fe,} \ldots \end{array}$$

- Spontaneous reaction
- Permanent storage
- No follow up monitoring
- Theoretical capacity >> emissions

In situ: react underground

Ex situ: react in industrial plant transport reactants and products

Reduce cost - market carbonate products Roads, buildings, land reclamation, . . .

Mineral

 CO_2

carbon

394 kJ/mol

Storage process

COo

Pipeline

Re-use/Disposal

SRCCS Figure TS-10

IPCC Special Report on Carbon Dioxide Capture and Storage (2005)

Zevenhoven, Fagerlund and Songok, Greenhouse Gas Sci Technol 1, 48 (2011) Sanna, Hall and Maroto-Valer Energy Environ Sci 5, 7781 (2012)

Science Breakthroughs

Slow kinetics – find catalysts

Passivating layer – control surface chemistry

Generation

Safe, Higher Performing Nuclear Electricity

Heat without combustion or carbon dioxide

Established experience curve

Challenges
Safety
1960s technology
Spent fuel

CuNb interfaces Michael Demkowicz-MIT

Now: 35% efficiency

2050: 50%

Science Challenges Materials for

Higher temperature

Higher radiation damage

Reprocessing for

- More electricity/fuel
- Less spent fuel storage

Develop Electricity as a Sustainable Energy Carrier

Superconducting Offshore Wind Generation

Wind turbine output limited by weight supported on the tower

Science Breakthrough

Superconducting wind generator

Double the output for same size and weight

capacity limit: 15-20 MW

offshore wind

Long Distance Electricity Transmission - US

Long Distance Electricity Transmission - Europe

Desertec

connect North Africa with Europe

15% of European power by 2050

thermal storage for power after sunset

http://www.dii-eumena.com/dii-answers/technologies-and-costs.html

Storing the Energy We Produce

Chicago

- Store intermittent solar and wind electricity
- Electrify transportation with plug-in hybrids and electric cars

Sep 11, 2012 Washington DC

Laboratory

Electrical Energy Storage Beyond Li-ion

Li⁺ → Mg⁺⁺, Y⁺⁺⁺ multivalent intercalation

Intercalation → chemical reaction Li-O₂, Li-S, Na-S

Flow batteries
High capacity, efficient, inexpensive
Many unexplored redox couples

Develop Chemical Bonds as a Sustainable Energy Carrier

Hydrogen
requires infrastructure, storage,
renewable production
2003 →

Cellulosic biofuels
requires land, low efficiency,
limited capacity
2007 →

Drop-in replacement for fossil

Incremental change to established combustion infrastructure

Promotes carbon mitigation, energy security

Graves, Ebbesen, Mogensen, Lackner Renewable and Sustainable Energy Reviews 15,1 (2011)

Carbon dioxide + water (hydrogen)
recycled chemical fuels
Significant science breakthrough

Develop Chemical Bonds as a Sustainable Energy Carrier

CO₂ + H₂O → many opportunities for sustainable chemical fuel

Graves, Ebbesen, Mogensen, Lackner
Renewable and Sustainable Energy Reviews 15,1 (2011)

Break the Barriers Among Energy Carriers

Electricity
Clean, efficient, versatile
Low energy density, low capacity storage
Avoids combustion and Carnot efficiency limits

Chemical bonds
Stable, long term, high energy density storage
Conversion to heat by combustion

Photons
Solar energy carrier
Ultimate source of light and heat

fuel cells batteries . . .

Science breakthrough
Seamless connection among three energy carriers
Fungible energy sources and uses
Oil for transportation replaced by electrons from sun . . .

Perspective – Societal Vision for 2050

Societal concerns

- Energy security and predictability
- Climate change
- Economic development and growth

Energy landscape

Versatile, interchangeable energy carriers, sources and uses

Energy as a commodity

widely available in many forms from many sources

International market promotes accessibility and predictability

Perspective – Science Breakthroughs

Mechanics and fluid flow in fractured rock - safe, abundant, cheap shale gas

Mineralization of CO₂ – safe, permanent, benign carbon mitigation

Recycle CO₂ and H₂O to fuel – chemical bonds as a sustainable carrier

Electrical energy storage beyond Li-ion

multivalent working ions, chemical transformation, non-aqueous flow batteries

High capacity superconducting wind turbines - enable offshore wind

Materials for extreme environments, reprocessing chemistry for spent fuel safe, high performance nuclear electricity

Efficient, easy conversion among energy carriers

Electricity, chemical bonds, photons

The carriers: hydrogen, carbon monoxide, hydrocarbons, alcohols, light, heat . . .

The converters: fuel cells, batteries, motors, generators, solar cells, light emitting diodes, internal combustion engines, combined cycle gas turbines, . . .

International market in commodity energy

Science enables the conversion, social and political forces achieve the outcome

Wilson Center

EUROPEAN COMMISSION European Research Area

Ulc University of Illinois at Chicago

EU-US Energy Summit

Visions of Sustainable Economic Growth

Sep 11, 2012 Washington DC

