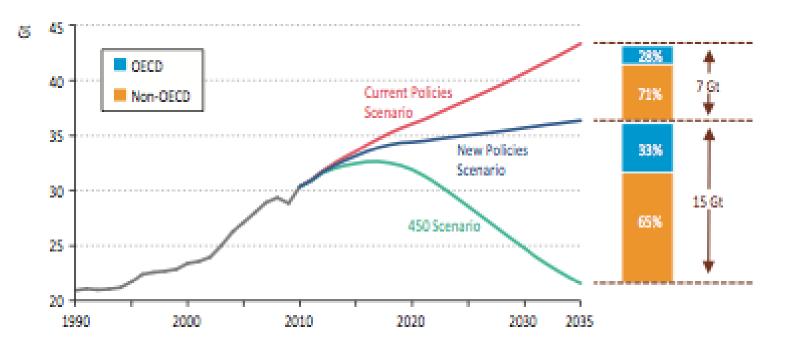
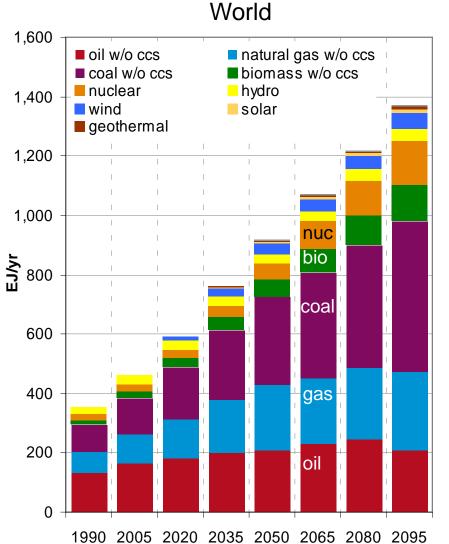
Moving Toward Optimizing Energy Efficiency and Renewables Using Smart Grid Technologies and Policies

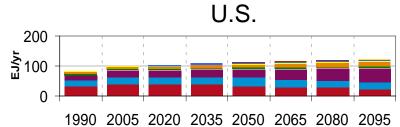
Marilyn A. Brown Professor of Energy Policy Georgia Institute of Technology

Visions of Sustainable Economic Growth: A Transatlantic Dialogue on Energy, Water, & Innovation


September 11, 2012 Woodrow Wilson Center, Washington, DC

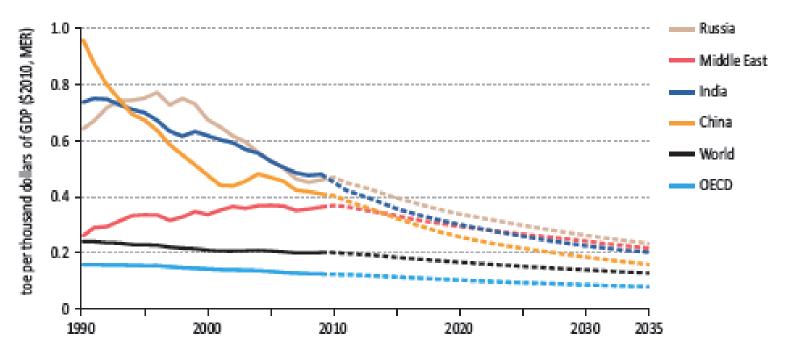


Door is Closing on 450 ppm CO₂ (or 2° C Rise in Global Temperatures)

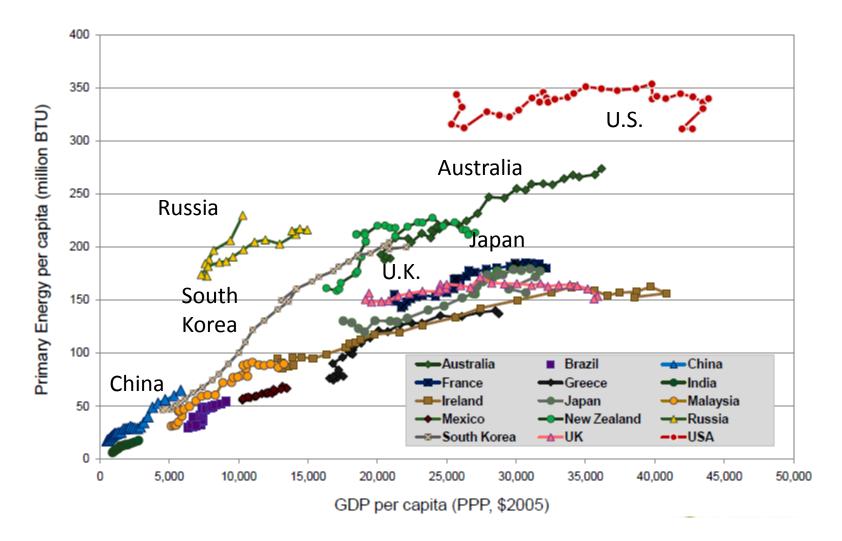

- Four-fifths of the total energy-related CO2 emissions "permissible" by 2035 is are already "locked-in" by our existing capital stock
 - Figure 6.2 World energy-related CO₂ emissions by scenario²

Global Trends: Where the Action Is

- U.S. energy demand is growing much more slowly than the rest of the world
- Today we consume almost 25% of the world's energy production; in 2100 the U.S. will consume less than 10%

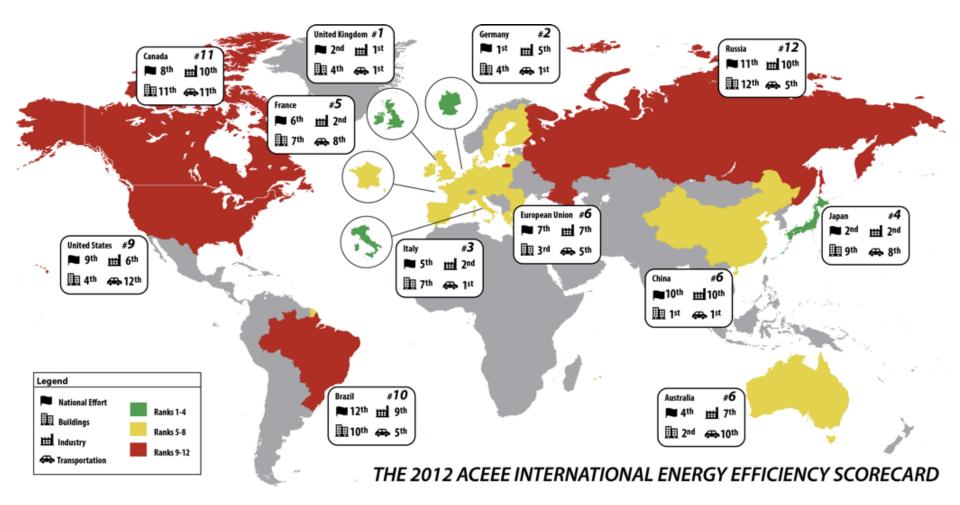


Source: Brown and Sovacool. 2011. Climate Change and Global Energy Security (MIT Press)

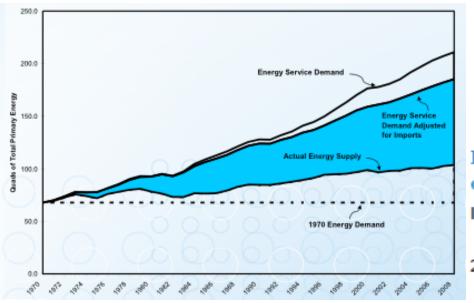

Energy Efficiency: Making a Difference, But More is Needed

- Global primary energy demand rebounded by a remarkable 5% in 2010.
- Energy efficiency improves at a rate twice as high as that seen over the last two-and-a-half decades, stimulated by tighter standards across all sectors and a partial phase-out of subsidies to fossil fuels.

Figure 2.9 Energy intensity in selected countries and regions in the New Policies Scenario, 1990-2035

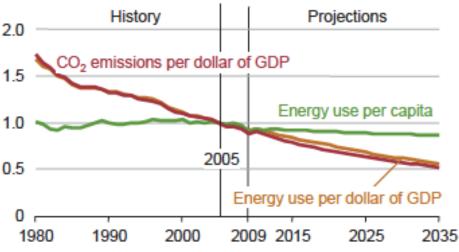


Per Capita Energy Use and Gross Domestic Product (GDP): 1980-2010


Source: Energy Information Administration (EIA)

The U.S. is Ninth in the World in Energy Efficiency

Source: Sara Hayes, Rachel Young, and Michael Sciortino. 2012. *The ACEEE 2012 International Energy Efficiency Scorecard*.


Energy Efficiency: The Largest Energy Resource & More is Available

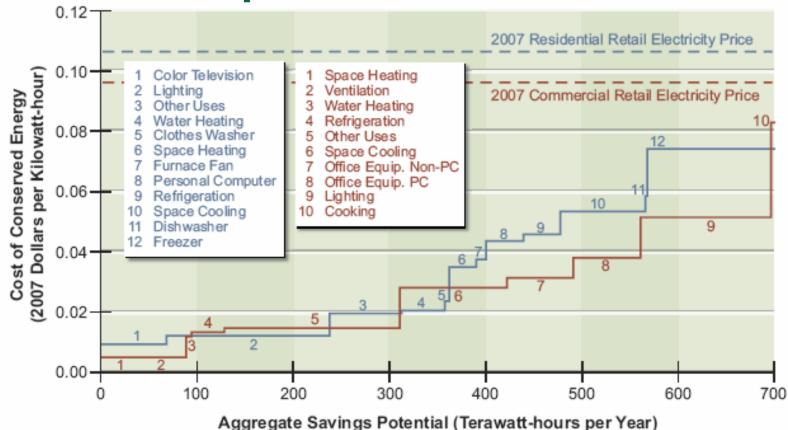
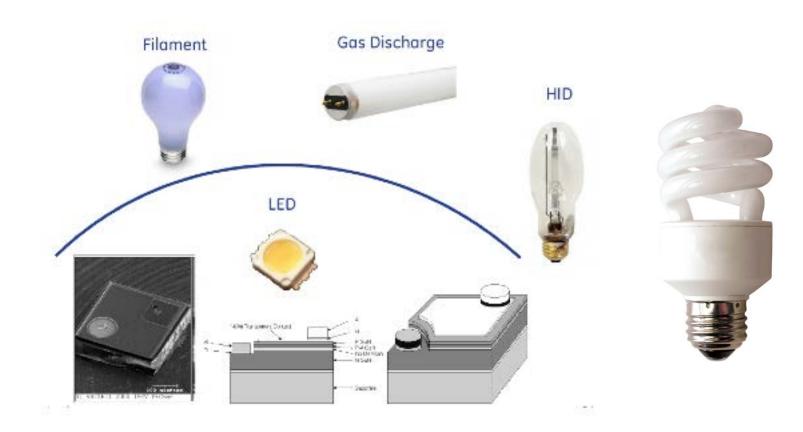

Source: Steven Nadel, ACEEE, 2011.

Figure 8. Energy use per capita and per 2005 dollar of gross domestic product, 1980-2035

Index, 2005 = 1


Opportunities for Energy Efficiency Improvements Abound

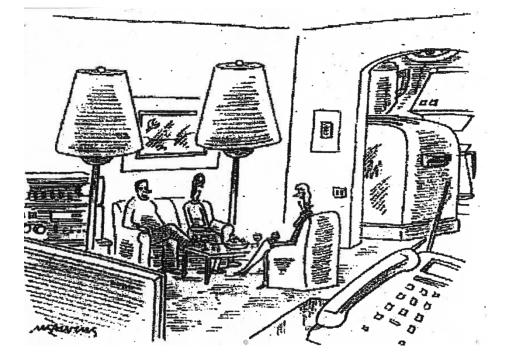
Cost of Conserved Energy= the additional cost that must be invested in order to implement an energy-saving strategy or feature.

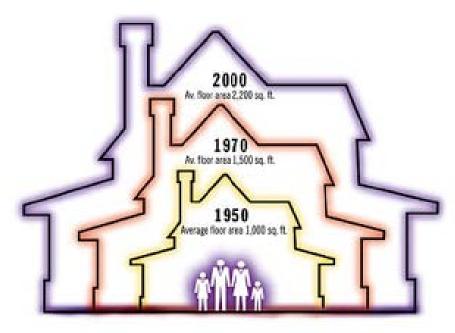
Source: National Academy of Sciences. 2009. Real Prospects for Energy Efficiency in the United States (Washington, DC: National Academies Press)

Light Source Efficiency Trends

Systems Integration Offers Future Savings (e.g., Climate Master Launches Trilogy™)

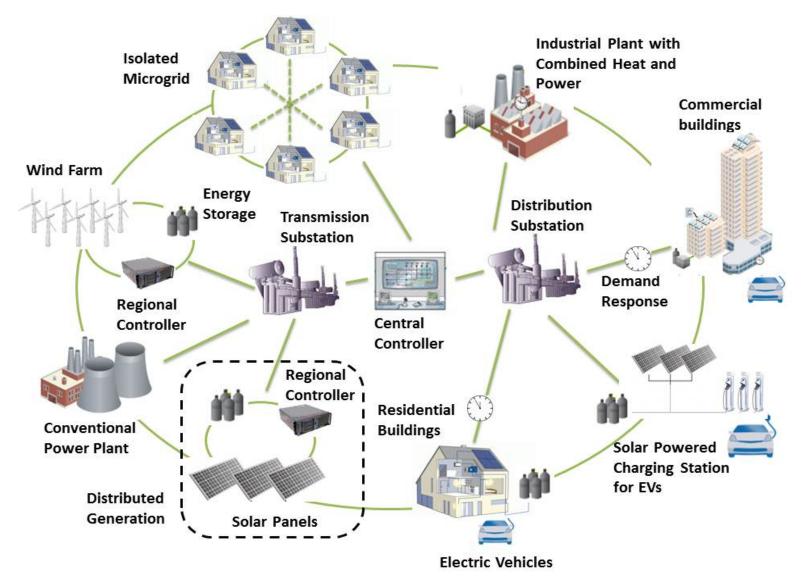
- ~ 65% energy savings vs. minimum efficiency (SEER 13) equipment
- ~ 33% savings vs. state-of-the-art two-stage GHP with the super heater




Integrated Unit: Water Heating and Space Heating/Cooling Separate Units: Water Heating and Space Heating/Cooling

The Impact of Affluence and Cheap Energy: A Rebound Effect?

"Now that we have a heat pump, we can afford a plasma TV and lots of lighting."



Average U.S. Home Size

From: U.S. Census Bureau, National Association of Home Builders

Smart Grid: A Vision for the Future

Source: Brown, Marilyn A. and Shan Zhou. In press. "Smart-Grid Policies: An International Review," *Wiley Interdisciplinary Reviews: Energy and Environment*.

Smart-Grid Policies in the US

- Net Metering Policies
- Interconnection Standards and Rules
- Smart Metering Targets
- Demand Response and Dynamic Pricing Policies
 - Time-of-Use Pricing (TOU)
 - Critical Peak Pricing (CPP)
 - Real-Time Pricing (RTP)
- Data Security & Privacy

Smart-Grid Policies – U.S.

Status	 Metric tons of CO₂ per Capita: 18.1 Percent Renewable Generation: 11%
Targets	 CO₂ emissions 17% below 2005 level by 2020 None (80% clean energy by 2035)
Financial Incentives	 In 2009: \$4.5 billion for smart grid investment grants
Key Legislation	 Energy Policy Act of 2005 and FERC Order 1000 Stimulus Bill
Smart-Grid Policy Emphases	 Improving distribution and transmission infrastructure to enhance system reliability and efficiency and to better integrate renewable generation Smart meter deployment

Smart-Grid Policies – UK

Status	 Metric tons of CO₂ per Capita: 8.5 Percent Renewable Generation: 7%
Targets	 Carbon emissions reduction by at least 34% by 2020 and 80% by 2050 –below the 1990 baseline 15% of total energy consumption from renewables by 2020
Financial Incentives	 A £500 million Low Carbon Networks (LCN) Fund A £6 million Smart Grid Demonstration Fund Feed-in-tariffs available
Key Legislation	 The 2008 Energy Act Energy Bill 2010-11 Smart Metering Implementation Programme
Smart-Grid Policy Emphases	 Distribution network modernization Smart meter deployment

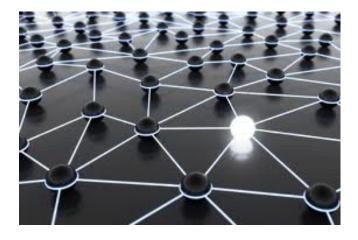
Smart-Grid Policies – Italy

Status	 Metric tons of CO₂ per Capita: 7.2 Percent Renewable Generation: 27%
Targets	• 17% of total energy consumption from renewables by 2020
Financial Incentives	• Feed-in-tariffs available
Key Legislation	 Regulatory orders National action plan for renewable energies of Italy
Smart-Grid Policy Emphases	 Improving distribution and transmission infrastructure to better integrate renewable generation Smart meter deployment

Smart-Grid Policies – Japan

Status	 Metric tons of CO₂ per Capita: 9.2 Percent Renewable Generation: 10%
Targets	 Reducing carbon Emissions by 30% below 1990 by 2030 Raising zero-emission power source ratio to 70%
Financial Incentives	 \$73 million investment on community grid system \$1.1 billion on four smart grid technology pilot projects Feed-in-tariffs available
Key Legislation	 The Strategic Energy Plan of Japan
Smart-Grid Policy Emphases	 Smart grid and smart communities demonstration programs Smart meter deployment

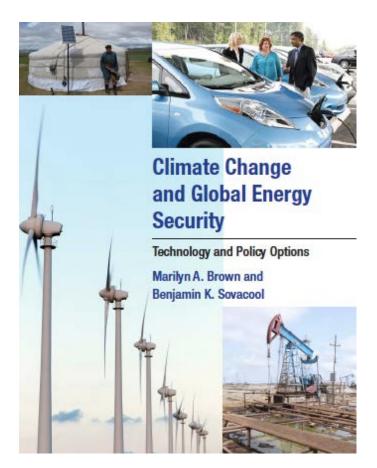
Smart-Grid Policies – South Korea


Status	 Metric tons of CO₂ per Capita: 11.9 Percent Renewable Generation: 1%
Targets	 Carbon emission reduced by 30% below BAU by 2020 11% of total energy consumption from renewables by 2030
Financial Incentives	 \$25.85 billion allocated for smart grid technology and infrastructure development
Key Legislation	 Smart Grid Road Map 2030 Korea's National Strategy for Green Growth
Smart-Grid Policy Emphases	 Smart power grid; Smart consumers; Smart transportation; Smart renewables; Smart electricity services

Smart-Grid Policies – China

Status	 Metric tons of CO₂ per Capita: 6.3 Percent Renewable Generation: 19%
Targets	 Carbon intensity reduced by 17% below the 2011 level by 2015 11% of total primary energy consumption from renewables by 2015
Financial Incentives	 \$45 billion investment in smart grid between 2011 and 2015
Key Legislation	 The Amendment of the Renewable Energy Law (2009) The 12th Five-year Plan The Special Planning of 12th Five-Year Plan on Smart Grid
Smart-Grid Policy Emphases	 Increasing transmission and distribution capacity Integration of distributed renewable generation

Moving toward Optimization: Some Recommended Policy Directions



- International and domestic collaboration to share smart-grid technology policy experiences
- A policy framework that attracts diverse funding sources for smart-grid deployment
- Regulatory changes that promote competitive electricity markets
- Policy-making that considers social as well as private costs and benefits and an understanding of consumers as well as markets

FOR MORE INFORMATION

Dr. Marilyn A. Brown, Professor Georgia Institute of Technology School of Public Policy DM Smith Building 685 Cherry Street, Room 312 Atlanta, GA 30332-0345

Email: Marilyn.Brown@pubpolicy.gatech.edu Phone: <u>404-385-0303</u> Fax: <u>404-385-0504</u>

