

Prospects of Fuel Cells and Hydrogen:

"Seeing Beyond the Press Releases"

Prof. Greg Jackson Chair of UMERC Steering Committee

e-mail contact: gsjackso@eng.umd.edu

Sustainable Energy Systems:

Energy systems that can last for millennia (adapted from John Turner, NREL 2006)

Questions for the Future of Energy:

- Sustainability
- Resource availability
- Energy Payback
- Environmental impacts
- Geopolitical factors
- Security
- Supply for emerging markets
- Providing a sustainable energy carrier for transportation

• Biomass

Answers:

- Solar
- Wind
- Geothermal
- Nuclear
- Hydrodynamic
- Wave
- Hydrogen

Why Hydrogen?

• Hydrogen like electricity is an energy carrier not an energy supply

- Unlike electricity, it can be stored relatively easily
- Unlike hydrocarbons, it does not necessarily lead to local CO₂ and other emissions

• Fuel cells for transportation will dictate the needs for H₂ infrastructure

- Leaders: Ballard, GM, Honda, UTC, other auto manufacturers
- Low temperature fuel cells currently requiring high purity H₂ (<100 ppm CO) for necessary power density (approach 1 kW/liter of fuel cell, longer life (> 5000 hrs.)
- Hydrogen IC engine as an alternative (BMW and Ford investing in this)
- Hydrogen is clean and can be produced from several sources
 - Fossil fuels with easier CO₂ sequestration
 - Low-temperature electrolysis
 - Nuclear power with high temperature electrolysis or thermochemical cycle
- Current Use of Hydrogen: ~ 9 million tons/yr in U.S. and growing
 - Equivalent in energy to about 0.3% of annual U.S. oil consumption
 - > 90% of H₂ production comes from steam reforming of natural gas (CH₄ + H₂O)
 - Primary uses today: are for refining petroleum and producing ammonia

Current Hydrogen Supply and Fuel Cell Utilization

- Approach for today involves reforming natural gas to H₂ and CO₂
- Overall well-to-wheel efficiencies are comparable to current-day hybrid vehicles but can be surpassed by proposed diesel hybrids (Wang 2003)
- Green-house gas emissions lower than proposed hybrids, but limited NG supply raises questions of sustainability (Wang 2003)

Economics of Hydrogen Fueling Scenarios

Gasoline Marketers Association:

\$2 billion to convert 10% of current retail stations to hydrogen.

Shell Hydrogen: \$19B for 25% conversion

Cost of initial nation-wide H₂ Infrastructure

Alternative Local Production: Home Refueling

14 A R VI N

Sustainable Paths to Hydrogen

from John Turner, NREL 2006

Renewable Hydrogen Supply

adapted from John Turner, NREL 2006

- Renewable approaches to hydrogen supply still face challenges.
 - Low efficiency of electrolyzer
 - -Need for large-scale storage if non-local production

Fuel Cell Technologies Going Forward

Proton Exchange Membrane Fuel Cells

- Operation at low temperatures < 120°C
- Expensive precious metal catalysts
- Fuel limited to relatively pure H₂ with inerts for high power applications
- For portable power, dilute methanol or ethanol mixtures may become viable
- H₂O management critical for most designs
- PEMFC primary applications vehicles, small gensets, portable power

85 kW H₂-fueled automobile PEM fuel cell stack provided by Ballard Power Systems

Solid Oxide Fuel Cells

- Operation at high temperatures > 600°C
- Inexpensive catalysts
- Potential for fuel flexibility coal gas, NG, ethanol, biomass gases
- Ideal for integration with C sequestration
- Readily integrated with gas turbines for high efficiency hybrid plants

SOFC primary applications – stationary / distributed power, APU's

SOFC single cell schematic provided by R.J. Kee, Colorado School of Mines

PEM Fuel Cells – Challenges and Breakthroughs

- Vehicular fuel cell system development has brought this technology to some maturity but costs remain high even for mass production (\$75 \$100/kW)
 - Current DOE plan to make commercialization decisions regarding transportation fuel cells and large-scale H₂ production by 2015.
- Markets with high kW costs provide best opportunities for today
 - Electronic devices, portable generation, utility transport, public transport
- What are the barriers
 - Cost (precious metal catalyst and expensive polymer membrane)
 - Storing pure H_2 supply
 - Systems issues (H₂O management, storing pure H₂ or processing fuel)

• What are forward looking solutions

- Electrocatalyst with less precious metals
- Higher temperature polymer membranes
- More efficient H_2 purification processes
- Light and safe materials for H₂ storage

SOFC's – Identifying Technical Challenges and Breakthroughs

- Stationary power SOFC development funded by DOE has led to one realization, but further funding for small-scale power has led to new technology.
 - Fabrication costs remain high for SOFC's (~\$400/kW)
 - Operational cost benefits from very high efficiencies (>60% with hybrid gas turbine/SOFC's) and possible cogeneration.
- Markets with high fuel costs and steady operation –military portable generation and remote distributed power provide best opportunities
 - Materials issues still to be resolved for improved fuel flexibility and operability

• What are the barriers

- Low-temperature ceramic membranes
- Low-cost catalyst with fuel flexibility and durability

• What are forward looking solutions

- New lower-temperature ceramic membranes
- Electrocatalyst layers with fuel flexibility and durability
- Improved integration with small gas turbines
- Integration with sequestration technology

Nano-architectured Catalysts for PEM Fuel Cells

Profs. B. Eichhorn, G. Jackson, Ballard Power Systems

- Developing nanoparticle architecture through controlled liquid synthesis to design stable catalysts that have active precious metals only on outer shell
 - Reduced precious metal requirement
 - Nano-architectures provide superior tolerance for primary H_2 impurity, CO.
- Successful development may improve PEM fuel cell system efficiency and operability with bio-derived fuels.

Example Au@Pt heteroaggregate particles for H_2 /CO oxidation

High-Temperature Fuel-Flexible Solid Oxide Fuel Cells Profs. G. Jackson, B. Eichhorn, R. Walker

- Exploring fundamental material issues to provide new understanding for optimizing design solid oxide fuel cell assemblies for operating on hydrogen, bio-derived fuels, and fossil fuels
- System design tools being developed to explore how solid oxide fuel cells can be used for making CO₂ capture more feasible.

Optically accessible rigs for laser diagnostics to evaluate new materials Micro-fabricated fuel cell architectures to understand chemistry of H₂ and other fuels

Experimentally validated models for fuel cell design

H₂ and Fuel Cells: Identifying the Opportunities

U.S. Energy Flow Trends – 2002 Net Primary Resource Consumption ~103 Exajoules

Source: Production and end-use data from Energy Information Administration, Annual Energy Review 2002. *Net fossil-fuel electrical imports. **Biomass/other includes wood, waste, alcohol, geothermal, solar, and wind. from Lawrence Livermore Natl. Laboratory http://eed.llnl.gov/flow (June 2004)

