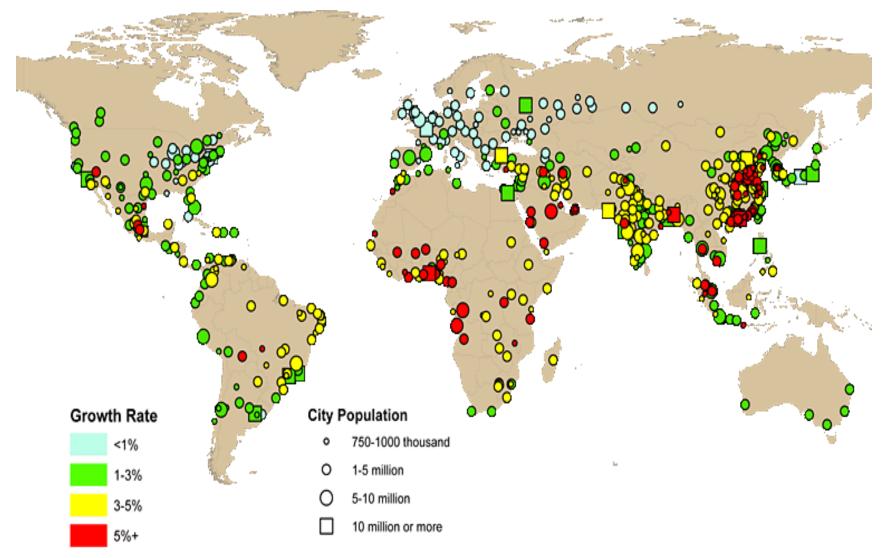
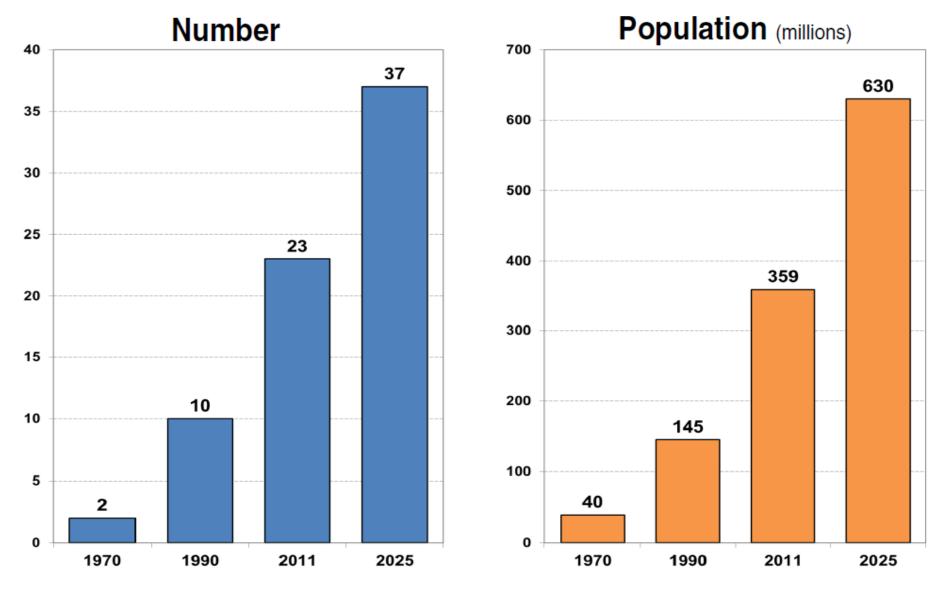
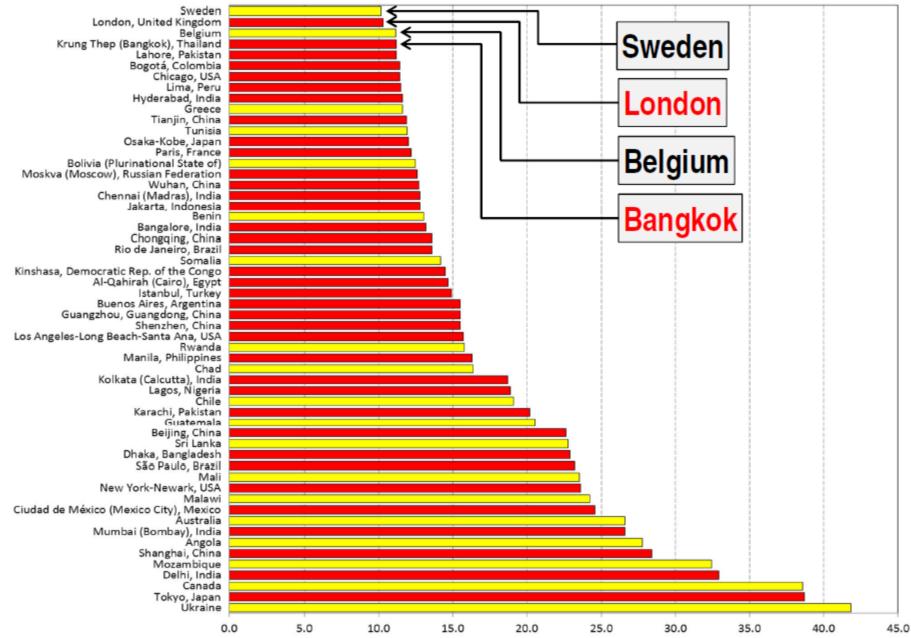
SUSTAINABLE CITIES: ASIA Jean-Jacques Dethier | World Bank


Presentation at the Wilson Center – Comparative Urban Studies & Asia Program, with USAID Alumni Association Washington, DC, July 29, 2013

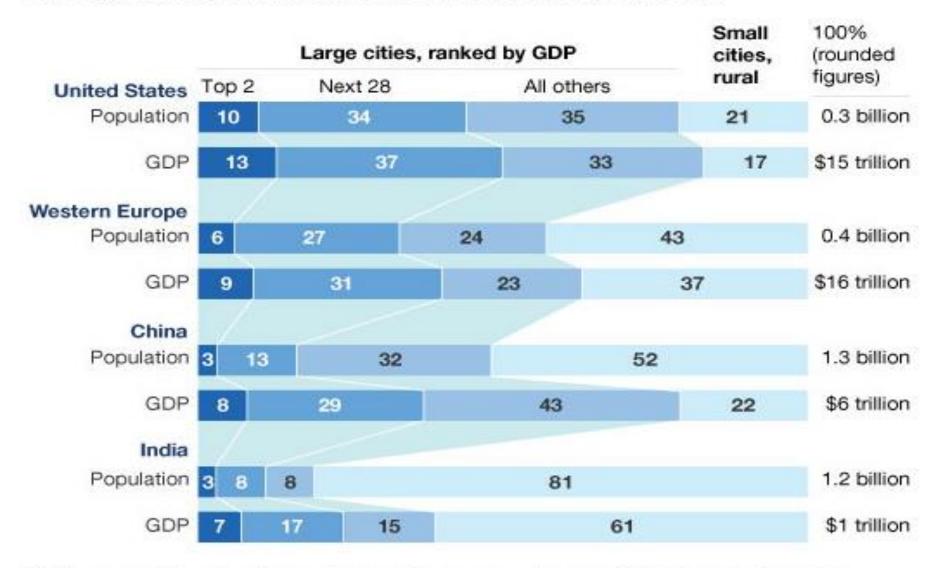
OUTLINE


- Introduction: Urbanization around the world
- Sustainability
 - what does it mean? Sustainability indices
- Benefits and Costs of Urbanization
- Environmentally sustainable cities
 - Urban planning
 - Energy efficiency
 - Waste water
 - Retrofitting: Easy Fixes
- Financing Cities
 - Financing sustainability: three scenarios
 - Sources of finance

Growth Rates of Urban Agglomerations, 1970-2011


Source: United Nations, Population Division (2012). World Urbanization Prospects 2011

Mega-Cities (10+ million Inhabitants)



Source: United Nations, Department of Economic and Social Affairs, Population Division (2012): World Urbanization Prospects, the 2011 Revision. New York

Source: United Nations, Department of Economic and Social Affairs, Population Division (2012): World Urbanization Prospects, the 2011 Revision. New York

Cities segmented by contribution to total GDP, 2010, cumulative % of total'

'GDP measured at real exchange rate; some figures may not sum to 100%, because of rounding. Source: McKinsey Global Institute analysis

Episodes of Urbanization

JAPAN

First specialized in labour intensive low technology goods production and then began to move up the technology chain.

THE TIGERS (HK, TW, SK, SG)

.Strategy of concentrated spatial development in urban agglomerations, Seoul/Pusan and Taipei/Kaohsing.

Export oriented and outward looking strategy. Cities as connected with the rest of world as with their hinterlands.

THE CUBS

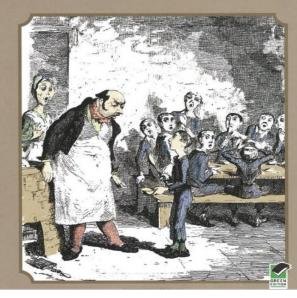
Thailand, Indonesia and Malaysia during the 1980s.

concentrated heavy investment was repeated in the metropolitan cities of Bangkok, Jakarta and Kuala Lumpur

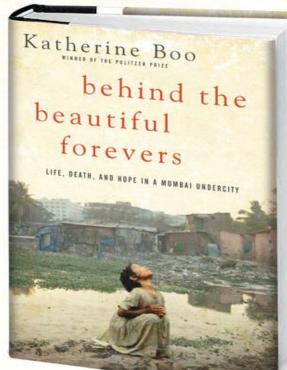
CHINA

Early Chinese economic and urban growth in the 1980s and 1990s was also the result of a similar strategy Shanghai and the PRD

INDIA


metropolitan growth but not necessarily coastal

BENEFITS?


URBANIZATION

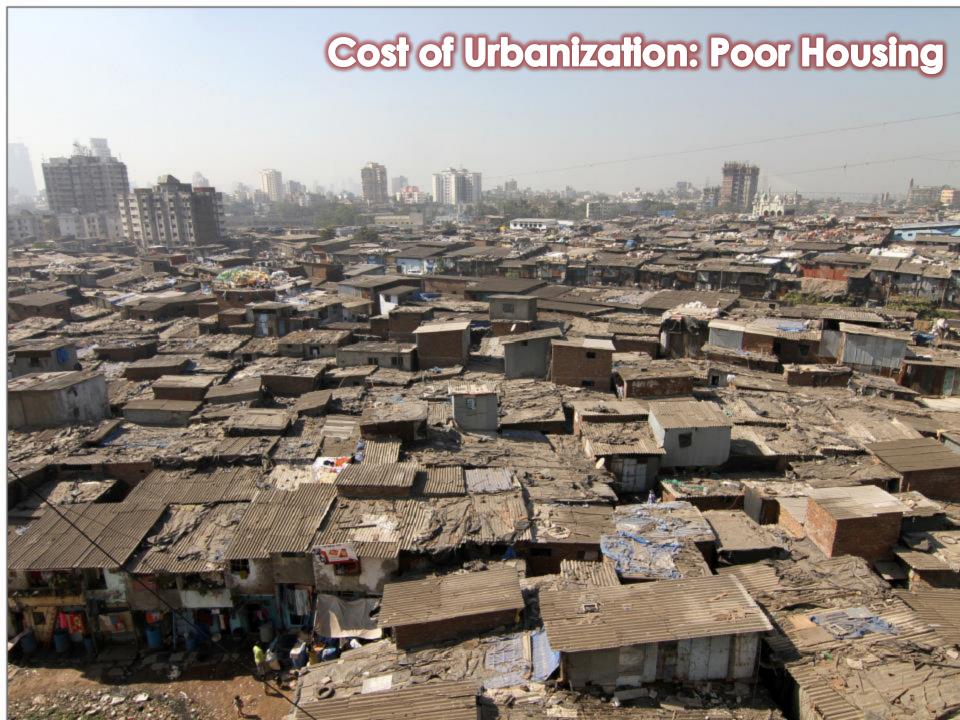
COSTS ?

CHARLES DICKENS Oliver Twist

Cost of Urbanization: Congestion

Cost of Urbanization: Waste & Environmental Challenges

いい


ASHA BR

The

LOUGHANCH 2008

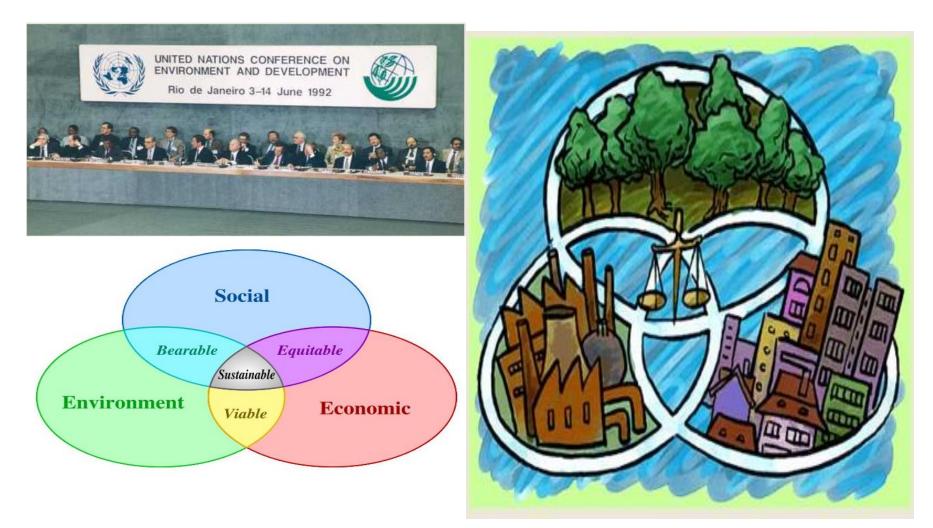
Aliva

Kalage

Cost of Urbanization: Air Pollution

Cost of Urbanization: Crime

M


PFA

ICIA MIL

1717

Luciano Signorell

SUSTAINABILITY : MEETING THE NEEDS OF THE PRESENT WITHOUT COMPROMISING THE ABILITY OF FUTURE GENERATIONS TO MEET THEIR OWN NEEDS (Brundtland Commission, 1987)

Source : Wikipedia

INDICATORS OF SUSTAINABILITY (McKinsey)

Categories	Definition	Indicators	Description of the indicators
Basic needs	 Access to safe water, living conditions, education and health services 	 Water supply Housing Health Education 	 Water access rate (%) Living space (sq.m per capita) Doctors per capita Student teacher ratio (primary school)
Resource efficiency	 Efficient use of energy, power and water; waste recycling 	 Power Water demand Waste recycling % GDP from heavy industry 	 Total electricity consumption (kwh per GDP) Water consumption (Liters per capita) Rate of industrial waste recycled and utilized (%) Heavy industry GDP/ Total GDP (bln RMB)
Environmental cleanliness	 Clean air and water Waste management 	 Air pollution Industrial pollution Waste water treatment Waste management 	 Concentration of SOx, NOx, PM10 (mg/cu.m) Industrial SO2 discharged per GDP (T/ RMB) Wastewater treatment rate (%) Domestic waste collected & transported (10,000 T per capita)
Built environment	 Dense, transit- oriented, green, efficient design 	 Urban density Mass transit usage Public green space Building efficiency 	 Persons per square kilometer of urban area Passengers using public transit (bus, trolley) Public green space per capita (sq.m per capita) Building heating efficiency
Commitment to future sustainability	 Investment in human and physical assets 	 Green jobs Investment on environmental protection 	 # of environmental professionals per capita Amount of environmental sanitation funds per GDP

Livable and resilient cities are ...

- among the most energy-efficient.
- Built-up areas are compact. Street networks are dense and interconnected;
- High densities of buildings, jobs, urban amenities and social infrastructures;
- Public transit modality and capacity match with urban density, land use and social infrastructure;
- Main urban amenities such as schools, green spaces or transit are accessible by walking;
- Urban blocks are small sized and buildings are aligned along the stree allowing internal gardens & courtya Streets promote walking;
- The urban fabric—buildings & street is designed and oriented to optimize bioclimatic potential.

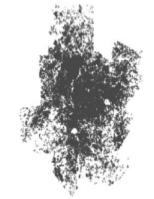
Changes in urban forms are influenced by technological choices for transportation, land value, and urban development policies.

• Transportation technologies are a key driver of urban transformation.

The urban extension of a city is directly correlated to the average distance that can be travelled in one hour. The improvement of traffic speed may thus encourage urban sprawl. New technologies and infrastructures for transport may dramatically change the spatial distribution of land use, densities and activities within the city.

• Land value drives the rate of conversion of rural land into urban land.

The improvement of transport technologies and infrastructures makes cheaper rural land accessible. Hence, it allows its conversion into urban land and increases the area available for urbanization. Without land value control, market forces naturally drive cities towards urban sprawl.


• Urban development policies and infrastructure investments

are responsible for land use, size of blocks and plot subdivision, the structure and hierarchy of the road networks and street patterns, and the spatial distribution of urban amenities.

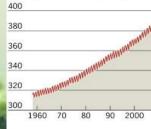
• Urban forms greatly affect energy use in urban transport and in the built environment

Box 1: Sprawl vs. Compact Cities

often cited example of urban sprawl is Atlanta, which has a similar population as Barcelona but occupie in area which is 26 time as large (Bertaud & Richardson, 2004)

	Atlanta	Barcelona
Urban population (million inhabitants)	2.5	2.8
Urban area (km²)	4,280	162
Urban density (pph)	6	173
Energy consumption per capita for private transportation (MJoules) ⁵	80	9

ENVIRONMENTALLY SUSTAINABLE CITIES


- HOW TO FEED, HOUSE AND TRANSPORT URBAN POPULATION IN ECOLOGICALLY SOUND WAYS?
- FIRST, USING LESS ENERGY AND EMITTING LESS Carbon Dioxide Per Household
- BUT IT IS NOT ENOUGH TO BE GREEN. CITIES ALSO NEED TO BE SUSTAINABLE.
- SUSTAINABILITY MUST BE BUILT INTO CITY INFRASTRUCTURE FROM THE START.
- RETROFITTING IS LESS COSTLY THAN REBUILDING CITIES FROM SCRATCH

Global warming \rightarrow increasing energy efficiency and reducing greenhouse gas emissions

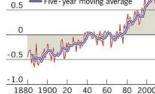
> **Transportation systems: Electric cars;** compressed natural gas

Atmospheric concentration of CO₂

At Mauna Loa, Hawaii (parts per million, monthly averages)

Per capita CO₂ emissions

Metric tonnes of carbon


1.4

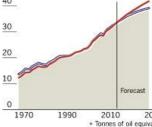
1.2

1.0

8.0

0.6 1950 60 Global temperature anomaly Difference from 1951-1980 average (°C) 1.0 - Annual - Five - year moving average 0.5

CO2 emissions and primary energy


13

11

30

20

Emissions from energy use Primary energy Billion tonnes CO2 - Billion 40

Sources: NOAA; Nasa Goddard Institute; CDIAC; BP

70 80 90 2000

Energy Saving Opportunities in Cities

End-use sector	Key opportunities	Technical energy efficiency
	New buildings designed to minimize	Use up to 90% less active energy than
	active energy use	typical new buildings do
Residential, public and	Whole building retrofit aimed at	Save up to 90% of the thermal energy
commercial buildings	minimizing active energy use	use in existing buildings
	High efficiency office equipment and appliances	Use 5-90% less energy than current models
	Cities designed to promote public transport, walking and bicycling	Substantial compared with the use of private motor vehicles.
Transport	Passenger light-duty vehicles	40-67% fuel efficiency gain by 2035
	Freight trucks	30-50% fuel efficiency gain by 2035
Municipal services	Water and sanitation	5-25% or more system-wide energy savings depending on system
	Public lighting	Up to 85% energy savings compared with incumbent technologies

Sources: a. World Energy Outlook 2012, International Energy Agency;

b. Primer on Energy Efficiency for Municipal Water and Wastewater Utilities, 2011, ESMAP; and

c. Lighting the Clean Revolution, 2012, the Climate Group.

WATER CONSERVATION 1. incentives to curb water user rebates for installing rainwater-harvesting systems water-conserving toilets.

Systems detecting and controlling leaks in waterwor

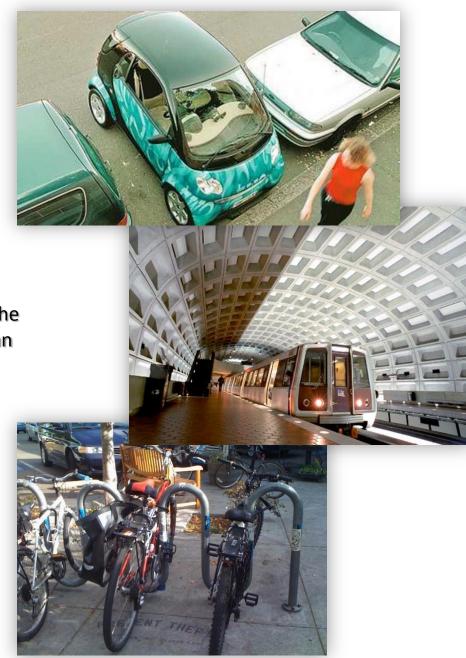
(Tokyo world leader) access to safe drinking water and s

ellers live in slums, vulnerable to cholera and water

STE MANAGEMENT

leftover waste flows into "biodigesters" [Capturing me fills is cheapest ways to cut down on greenhouse gas e

SMART PARKING


Digital parking meters tell mobile-phone and navigation apps when a space opens up, reducing traffic caused by drivers trolling for spaces (San Francisco)

UNDERGROUND TRANSPORTATION

Commuter trains, subways and primary roads run underground in massive tunnels, freeing the ground level for easy, clean bike and pedestrian traffic (Portland, Ore.)

BIKE RACKS AND LANES

Ample bike lanes and racks encourage more people to ride instead of drive; they also promote fitness (Minneapolis)

WAVE POWER

Hinged cylinders anchored in the seafloor are pushed by waves, turning onshore turbines that create electricity

(Orkney, Scotland)

STORM-SURGE GATES

Open gates in rivers, estuaries and canals close when storm surges are expected, to protect low-lying and subterranean infrastructure

(Rotterdam; London)

SOUR FILMS

Photovoltaic sheets on south-facing building facades generate electricity (Berlin)

UNDERWATER TURBINES

Turbines seated on the seafloor or estuary bed are spun by daily tides, generating electricity (New York City)

SOLAR POWER

Panels generate electricity instead of power plants and also shade rooftops to lower a building's cooling needs

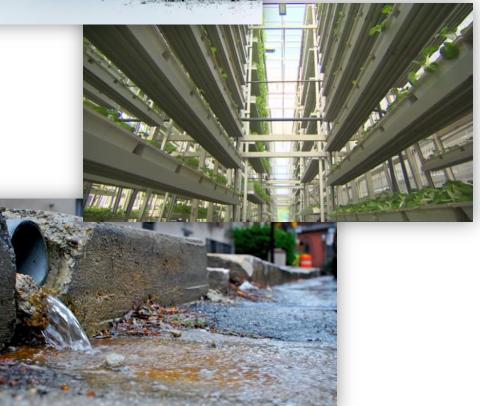
(Redlands, Calif.)

HIGH-EFFICIENCY WINDOWS

Superinsulated windows quadruple the thermal performance of double panes and can be made from the glass in existing windows (Empire State Building, New York)

CARBON-SEQUESTERING CONCRETE

Construction material made locally with carbon dioxide that is exhaled by power plants could reduce greenhouse gas emissions (Under development)


VERTICAL FARMS

Food grown indoors could reduce fertilizer and freshwater use, shorten transport and recycle gray water otherwise dumped by treatment plants

(Under development)

STORM-WATER PRICING

Taxing property owners on the volume of storm water that runs off their property promotes retrofits that reduce wastewater volume at treatment plants (Philadelphia)

LEED NEIGHBORHOOD

Residential and commercial construction done across a city region to the highest green, or Leadership in Energy and Environmental Design (LEED), standards saves energy, materials and emissions

(Rockville, Md.)

GREEN ROOFS

Rooftop vegetation insulates buildings against heat and cold and absorbs storm water (Chicago)

WHITE ROOFTOPS

Rooftops painted white reflect heat, lowering a building's cooling cost and a city's heat buildup

(Washington, D.C.)

THREE-BIN RECYCLING

Requiring businesses and homes to separate trash, recyclables and compost spares landfills; collection charges drop as trash drops (San Francisco; German cities)

SATELLITE IRRIGATION

Satellite control of park and lawn irrigation systems cuts water consumption and pumping power

(Los Angeles)

HYBRID TAXIS

Large portions of taxi fleets converted to hybrid vehicles reduce air pollution and greenhouse gas emissions (San Francisco; New York City)

Financing Cities: <u>Mobilizing finance</u>: three scenarios

- 1. Mature debt markets but weak devolution framework
- 2. Constrained debt markets but successful devolution
- 3. Mature markets and devolution secured

Sources of finance - Budget - Loans - Balance sheet financing

Sources of finance (continued)

- Donor grants
- Private sector participation (PPPs)
- Value Capture
- other sources: installment purchase; business improvement districts; land banks, etc

