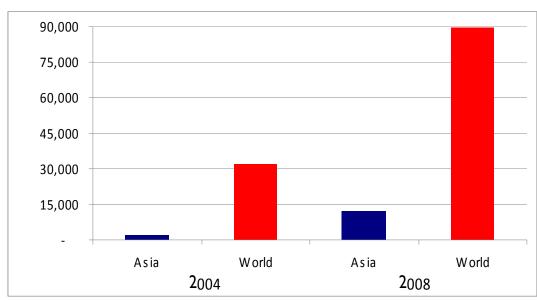


Growth in Transport Fuel Demand and Implications


- Transport demand to increase 15 350% by 2030.
- Fossil fuels currently contribute 5 48% of total particulate matter in Asian cities.
- Biofuels are roughly 3% of current transport demand in developing Asia (1% globally).

Boom (2004-2005) and Slump (2007-2008)

- Introduction of targets and incentives in the US and EU
- Asia starts to produce biofuels for export and countries create targets/mandates of their own
- Current feedstock and oil prices erode producer profitability a current slump

Report Findings

Ambitious Targets and Mandates Set

Country	Ethanol Target	Biodiesel Target	
China	10 MMT by 2020	20 2 MMT by 2020	
India	20% by 2017	20% by 2017	
Indonesia	20% by 2015	10% by 2010	
Malaysia	na	5% by 2009	
Philippines	10% by 2011	2% by 2009	
Thailand	10% by 2011	10% by 2012	
Vietnam	500 ML by 2020	50 ML by 2020	

Scope and Objectives

In other words...

INDONESIA (Ethanol)

- CURRENT: 215 Thousand kL/year;
- 2010: 4 million kL/yr
- 2025: 17.3 million kL/yr

INDONESIA (Biodiesel)

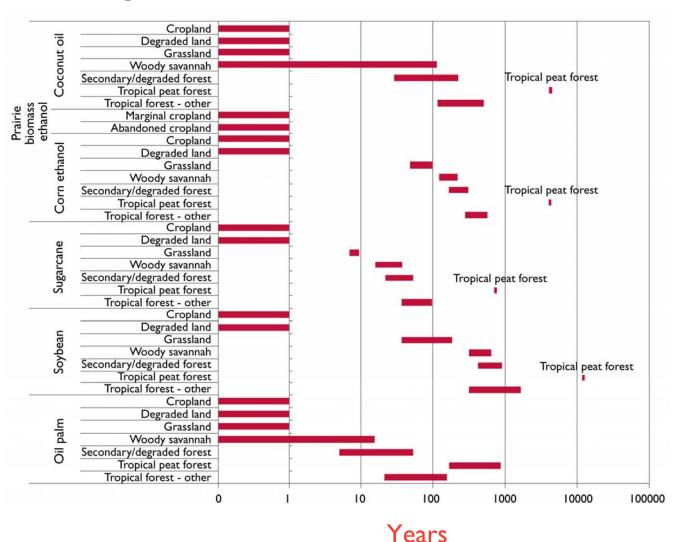
- CURRENT: 2.9 Million kL/year;
- 2010: 5 million kL/yr
- 2025: 25 million kL/yr

Life cycle assessment of biofuels

Indicative Ranges of Net Energy and GHG Balances of Biofuels from Selected Biofuels Feedstocks without Land Use Change

Crop	Energy Balance*	GHG Savings**	
Sugarcane	-0.6 to 0.8 MJ	78–133 %	
Sweet Sorghum	-0.6 to -0.3 MJ	67–133 %	
Cellulosic Ethanol	-0.2 to 0.4 MJ	67–111 %	
Corn	0.4 to 1.2 MJ	11–56 %	
Oil Palm	-0.3 to 0 MJ	122–156 %	
Jatropha	-0.5 to 0.4 MJ	100 –144 %	
Coconut	-0.1 to 0.4 MJ	56–86 %	

^{*} By way of comparison, the energy balance of fossil fuels is 1.2 MJ of fossil fuel inputs to produce 1 MJ of energy output. Therefore, biofuels with net energy balances of <1.2 MJ produce net energy savings compared to fossil fuels.


^{**} GHG savings are relative to fossil fuels

Report Findings

Carbon payback analysis

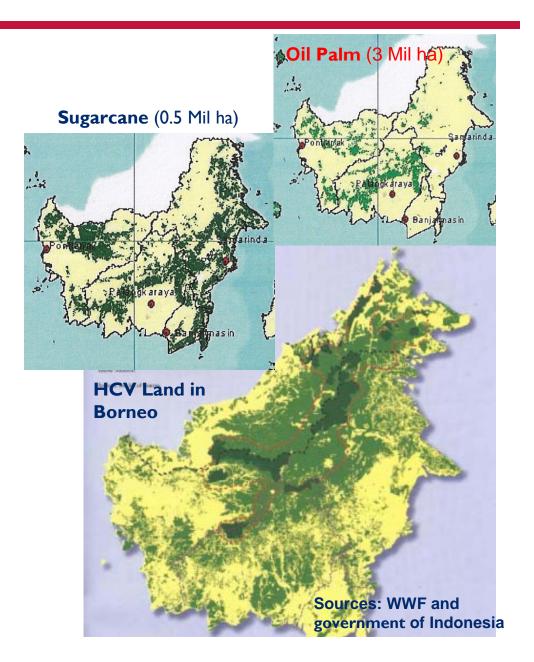
- Carbon Debt
- CarbonPayback Time

Impacts on air, soil, and water quality and

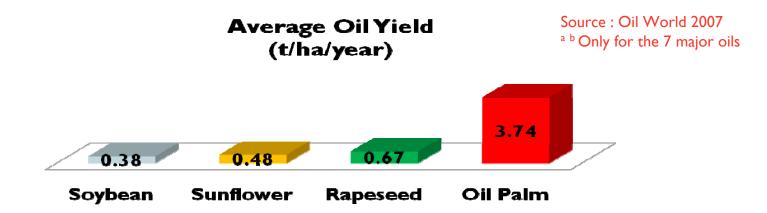
quantity

 Severe water shortages projected for India and China – may not support biofuels production.

- Reduction in CO, particulates and volatile organics but ozone and NOx are increased
- Water quality impacted by synthetic fertilizer run-off and waste water from processing



Report Findings


Biodiversity impacts

- High density of species in rainforests of Malaysia and Indonesia
- Peatlands
 - Indonesia has recently lifted ban on peatlands
- Poor governance
- Indirect loss of forest (e.g. timber extraction, forest fires)

Oil Palm Expansion – An almost certain outcome

Demand for Edible Oil

Demand 2007	Demand 2050	Plantation 2007	Plantation 2050
121 Mt (37 Mt)	240 (120 Mt)	11 Mha	+12 Mha

Source: Crowley (2009)

Social Impacts

- Smallholder schemes have shown mixed results
 - → small-scale systems preferable
- Employment potential needs to balanced with efficiency and mechanization
 - Potential problems supplying the infrastructure for plantation expansion (e.g. jatropha and oil palm expansion in Indonesia)
- Large-scale biofuels can result in infringements on indigenous peoples and labor rights
 - → need enforcement of rights, avenues for conflict resolution and participation mechanisms

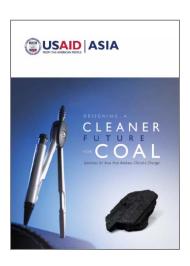
From global transport fuels to decentralized energy – from Cars to People

- More than half a billion people in Asia lack access to modern electricity
- Negative environmental, economic, and social impacts from large-scale biofuels
 - → decentralized energy using non-food crops can reduce soil erosion, improve soil fertility and improve water quality and reduce deforestation with careful planning and management
- Biofuels on a smaller, decentralized scale can provide energy for cooking and transport, and electricity
- Biofuels for decentralized energy can provide greater social benefits than biofuels for transport.

Future Priority Areas

- Policy Development Needs
- Support for Sustainability Standards and Certification
- Support scale-up of decentralized biofuels
- Assess and map land resources
- Support agronomy research and crop improvement
- Tech Transfer on cellulosic ethanol
- Technical Assistance on life cycle analysis

Thank You


Pradeep Tharakan
pradeep@cleanenergyasia.net
www.cleanenergyasia.net

Background

- 3-year program, launched Oct 2006
- Active in 6 largest developing Asian economies:
 China, India, Indonesia, Philippines, Thailand, and Vietnam
- USAID-led program with additional funding from Dept. of State (APP)
- Areas of focus: Cleaner Coal, CFLs, Clean Energy Finance, and now biofuels.

