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Executive Summary  

There is no shortage of information – and misinformation – in the 

media about energy use, renewables and the need to curtail (or 

eliminate) the use of hydrocarbons.  While it is true that mankind 

needs to reduce its dependence on hydrocarbons, because of their 

non-renewable nature, there are many economic and practical 

realities about renewable forms of energy that are often not 

considered or simply ignored.  We believe these realities will 

cause the transition to renewables to take much longer and cost 

significantly more than might be realized.  

The objective of this report is to identify the realities about 

renewables, compare these to other forms of energy on an “apples 

to apples” basis and forecast how our energy use will change over 

the coming decades.  We take into account the practical 

advantages and disadvantages of each type of energy source, the 

economics of producing the energy and include the cost of CO2 

emissions (which we have priced at $50/tonne) in the financial 

analysis.  From this analysis, we believe that unless there are 

significant breakthroughs in renewable technologies, hydrocarbons 

will continue to dominate our energy needs well into the next 

century.   

We believe that natural gas, the lowest-cost and cleanest-burning 

hydrocarbon, will play a central role in meeting global energy 

needs and the long-awaited paradigm shift to increased natural gas 

demand is not that far off.   

Economic Realities of Energy 

The following accurate statement is often repeated: “we now have 

the technology to convert to renewable forms of energy.”  

However, an equally-accurate statement is: “renewables are too 

expensive, when compared to hydrocarbons, to implement on a 

broad basis.”  Hydrocarbons are non-renewable, but they are the 

most economic form of energy we have access to at this time.   

Renewables are often considered sustainable sources of energy due 

to the fact that their energy comes from infinitely   renewable wind, 

sun, waves or crops.  Ironically, many of these renewables are only 

sustainable if continually subsidized by governments; governments that are often not in the financial position 

to fund economically-unviable projects.  Subsidies are indeed required in many circumstances, but should act 

only as catalysts that temporarily insulate nascent technologies from market forces until they become self-

sustaining. 

Nuclear energy currently plays a small role in the global energy picture at only 5.5% of the total; we believe it 

will continue to play a relatively small role, especially after recent events in Japan.  Notwithstanding, at some 

point in the future, it could play a more meaningful role as hydrocarbons become scarce and if safety concerns 

can be addressed. 

The issues to be addressed in regards to energy use, and the necessary conversion to renewables, are vast, 

extremely challenging and very complex.  While it is true that society needs to reduce consumption of 

hydrocarbons, it is also true that developing economies want, and require, an ever-increasing amount of 

energy.  These two truths are fundamentally in conflict with each other because the developing economies will 

use the cheapest form of energy to meet their growing demands: the non-renewable hydrocarbons. 
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An Energy-Equivalent Economic Analysis 

The end-product of AltaCorp‟s energy-equivalent, or “apples to apples” economic comparison (including the 

$50/tonne cost for CO2 emitted) can be seen in Figure 1 where we have shown the cost of developing 11 

different energy projects on a $/mmBTU basis.  Also shown on the chart is the measure of “$/boe-energy”, 

which is the cost of developing each type of energy project to receive the equivalent amount of energy in a 

barrel of light oil.  Even with the cost of CO2 included, hydrocarbons are the most economic form of energy at 

this time.  Renewables can be significantly more expensive, which is an indication of how difficult (that is, 

costly) the transition to renewables will be.   

Note on the chart that the lowest cost form of energy is natural gas.  As a result, this fuel will play a central 

role in meeting energy demand in the coming decades.  Renewables‟ role in the future is dependent on 

society‟s willingness, and ability, to pay for this higher-cost form of energy.  Figure 1 shows that offshore 

wind becomes viable at about $342/boe-energy and solar voltaic become viable at about $429/boe-energy. 

 

Figure 1. Total Costs for Various Energy Projects, Plus CO2 Costs at $50/tonne (using a Corporate Cost of Capital of 10%) 

Sources:  Please refer to the Sources section of this report.  

Note: Oil Sands is an average of mining and SAGD. 
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Practical Realities of Energy 

 Over 84% of global energy now comes from hydrocarbons; replacing these will not be easy. 

 Limited arable land (suitable for crops) is available for growing biofuel feedstocks and there are 

serious ethical issues related to using food crops for fuel in an over-populated and under-fed world. 

 Although there are some small applications for the storage of electricity such as electric cars, there 

are no utility-scale technologies to store energy created by solar and wind. 

 Many renewables create electricity, which is impractical in most transportation applications. 

 Individuals in developing economies want (or expect) higher standards of living, and higher per 

capita energy use is central in that objective.  Compounding this is the ongoing natural growth in 

world population. 

There is a realization that we – as a global society – need to move to renewable sources of energy.  This is not 

in dispute, because hydrocarbons are a depleting resource.  Although we do have the technological capability 

to implement renewable energy such as wind, solar and biofuels, there are many practical limitations to their 

eventual replacement of hydrocarbons.  For instance, solar power is only generated when the sun shines, wind 

energy is only generated when the wind blows and there is no practical way to store the electrical energy to 

balance a broad-based electrical grid.  Biofuel production is increasing, but the energy derived from food-

based crops could be used to feed millions of people. 

To put in context how difficult the transition to renewables will be, we have made the following calculations: 

 If all the arable land (land suitable for growing crops) in the U.S. was converted to corn for ethanol 

production – leaving no land for growing food – the total amount of ethanol would only replace 

74% of the country‟s imports of oil. 

 To replace the current global oil production of 84.4 million barrels per day with corn ethanol, it 

would take a corn field the combined size of the United States, China and India.  This area is 

actually greater than the currently-used arable land in the world.  If mankind was to convert all of 

the land now being used for growing crops we would only be able to replace the energy from 54 

million bbls/day of oil.  This represents only 64% of current global oil production.  

 To replace the coal-fired electricity in the United States, it would take solar panels valued at 

approximately $4.4 trillion.  The limiting factor, moreover, is the inability to store the power 

generated during sunny periods for use throughout darkness and times of cloud cover.  There is no 

current technology to store this amount of electricity on a practical basis.  To put the significance of 

the storage problem in context, it would take approximately nine billion car batteries (those used in 

automobiles for starting the engine) costing about $950 billion to store the solar power.  The nine 

billion batteries represent over 34 times the number of batteries in the roughly 260 million 

registered vehicles in the U.S. 

 

Converting to renewables will not be an easy task and will take a great deal of commitment on behalf of 

individuals, governments and industry.  We believe the transition to a sustainable-energy world will not be 

seamless and will require the ongoing use of hydrocarbons well into the next century. 

Mankind needs to develop an economic way to store electricity on a utility-scale basis.  Until that is done, 

electricity generating renewables such as wind and solar will be a type of “Unobtainium” in economic and 

practical terms (see definition on page 80). 

High Oil Prices are Here to Stay   

 Due to the practical and economic realities, we believe high oil prices are here to stay, which will 

continue to make Canada‟s conventional oil and oil sands companies attractive investments. 

 

There is a realization that 

the global society needs to 

move to renewable sources 

of energy.  This is not in 

dispute.   

To replace global oil 

production with ethanol, it 

would take a corn field the 

combined size of the United 

States, China and India. 

The transition to a 

sustainable-energy world 
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require the ongoing use of 

hydrocarbons. 
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Natural Gas Will Play a Central Role 

 Natural gas is the lowest cost source of energy and it is also the most environmentally-friendly 

when compared with other hydrocarbons. 

 In the move towards increasing use of renewables, natural gas will play a much bigger role than just 

a “bridge fuel”; we believe it will become the largest source of energy on the planet. 

 We expect companies levered to natural gas, especially those with long-term unconventional 

resources, will see significant share price appreciation as natural gas demand increases. 

 Oilfield service companies, which are central to the development of unconventional gas, will be 

clear winners in this global trend towards more natural gas use. 

 Infrastructure companies are also central players in this paradigm shift towards greater natural gas 

use.  In addition to pipeline companies, these will include companies that can provide technologies 

to allow additional uses of natural gas, technologies such as gas to liquids (GTL), liquefied natural 

gas (LNG), compressed natural gas (CNG) and electrical generation fired by natural gas. 

 Note the increase in natural gas use in our forecasts in Figure 2, this is an increase of almost 80% 

over current levels. 

Ethical Realities of Biofuels 

Readers will see that we are particularly sceptical about biofuels as a renewable source of energy.  The ethical 

reality around biofuels is the dilemma commonly referred to as the “food for fuel” issue.  We calculate that 

approximately 149 million people per year could be fed with the feedstocks now being used for ethanol 

production in the United States.  This surprisingly-high number might be considered unbelievable by some 

readers; accordingly, our analysis, calculations and sources are shown in detail on page 53.  Given the 

magnitude of the problem, we suggest reducing the subsidies for biofuels because they are distorting an 

already over-burdened global food system.   

To put this issue in context, if one oil sands plant with a capacity of 100,000 bbls/d was used solely to offset 

ethanol production in the U.S. and the ethanol-feedstock land was instead used for growing food, 34 million 

people could be fed every year.  This is approximately the population of Canada.  Frankly, a better option for 

the United States would be to reduce energy consumption and use these savings to offset and limit ethanol 

production.  If the country dropped its oil consumption from all sources by only 1% and this reduction was 

used to offset ethanol production, then the feedstock land could continually feed 64 million people every year.  

Mankind needs to develop technologies, such as cellulosic ethanol, that can generate biofuels without further 

burdening the world‟s over-taxed food supply system.  

Environmental Realities of Energy 

Environmental impacts need to be considered for all forms of energy use including renewables.  All too often, 

it is an overall simplification of one source of energy being “bad” and another being “good.”  For instance, the 

amount of water used in biofuels is significant; biodiesel crops use over 500 times the amount of water than an 

oil sands mining project for the same amount of energy produced.  Hydroelectricity also has an impact, based 

on the amount of carbon-absorbing forest that is lost when a valley is flooded for a hydroelectric project. 

A simple example is electric cars, many of which are coming to market with claims of being emissions-free.  

However, this claim does not take into account where the electricity came from in the first place.  Assuming 

that electric cars are distributed widely throughout the United States, 51.2% of these cars will actually run on 

coal (the amount of coal-fired electricity, measured on a BTU input basis).  It is a stretch to claim “electric 

cars are leading a green revolution,” when half of them will be powered by coal, the most emissions intensive 

hydrocarbon.  This is a commonly-repeated mistake, where a small subset of the world`s multifaceted and 

complex energy issues are examined in isolation.  The answer may be accurate, when a subset of energy issues 

are viewed, but in terms of addressing the world‟s energy challenges it may be of limited value (at best) or 

misleading (at worst).  

149 million people per year 

could be fed with the 

feedstocks now being used 

for ethanol production in the 

United States. 

Biodiesel crops use 500 

times the amount of water 

than an oil sands mining 

project, for the same 

amount of energy produced. 

It is a stretch to claim 

“electric cars are leading a 

green revolution,” when half 

of them will be powered by 

coal. 
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Hydrocarbon-producing companies are often accused of “greenwashing” (that is, trying to make themselves 

look environmentally friendly with minimal effort), however some “green” energy producers or supporters 

might be accused of this as well, by failing to point out all environmental effects.  In this report, we 

deliberately do not apply the word “green” to renewable energy because we feel the reality is much more 

complex. 

Meeting Growing Demand 

If global energy demand was to increase by only 1.2% per year, total consumption would grow by almost 60% 

over current levels by 2050, as shown in Figure 2.  This increase represents approximately three times the 

current total energy use, from all forms, of the United States.  The ability of mankind to extract this amount of 

energy from the earth over the next 40 years will be a monumental – if not impossible – task; a challenge made 

more difficult by trying to do so with fewer greenhouse gas (GHG) emissions and using more renewables.  It 

is really a one step forward and two steps back situation. 

 

Figure 2. Projected Growth in Global Energy Consumption by Source  to 2050  

High Case:  Rapid Adoption of Renewables 

Sources: EIA, Earth Policy Institute, AltaCorp Capital Inc. 

Note: Renewables Percentage includes Hydro and all other renewables 

* Non-Electricity Renewables are those used for heat generation 

  

Reduced Consumption as a “Source” of Energy 

Reduction in energy consumption can be a “source” of energy; this is an essential part of our energy future.  

The need to seek advances in energy conservation is self-evident.  Not only is it the most economic, it is also 

the most environmentally attractive “source” of energy.  It is our view that mankind needs to reduce its energy 

needs by choice, or the choice will be forced upon us. 
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Global energy demand will 

grow 60% by 2050; this 

represents approximately 

three times the current 

energy use of the U.S.   

Relying on non-renewable 

resources will eventually 

force mankind to reduce 

consumption and use 

renewables, but the 

transition will be difficult. 
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Tragedy of the Hydrocarbons 

Mankind has a preference for hydrocarbons, because of their convenience and low cost, but there is a tragedy 

developing related to our ongoing use of these non-renewable resources.  We call this The Tragedy of the 

Hydrocarbons, which is related to Garrett Hardin‟s The Tragedy of the Commons.  In the Tragedy of the 

Hydrocarbons, individuals will choose to consume hydrocarbons because they are the most economic form of 

energy available and the most convenient.  Because of their non-renewable nature, our ongoing use of 

hydrocarbons is slowly “emptying the tank.”  Even the huge natural gas resources now being exploited with 

new drilling and completion techniques will eventually run out (albeit many years from now).   

The tragedy lies in the reality that people will continue to use and deplete the non-renewable hydrocarbons, 

even though it is not in the best long-term interest of the individual, society, mankind or the planet for this to 

continue.  Relying on a non-renewable resource will eventually force us to reduce consumption and use 

renewable forms of energy, but the transition will (in the Tragedy of the Hydrocarbons context) be difficult 

and painful.  Mankind could have a relatively seamless transition to renewables but, because hydrocarbons 

continue to be the most economic and practical forms of energy, individuals will use these until forced to make 

a transition.  A transition forced upon us will not be simple or problem-free.  We discuss this tragedy in more 

detail on page 39. 

  

Our ongoing use of 
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What Are Our Sources of Energy Now? 

Let‟s start our analysis by examining the sources – or fuel types – for global energy consumption.  We can see 

that hydrocarbons, at 84%, account for the vast majority of our energy consumption.  Hydroelectricity is the 

most significant renewable energy source at 6% of the global total.  Other renewables include solar, wind, 

ethanol, biomass, biodiesel and geothermal, which collectively make up just 4% of the total. 

 
 

Figure 3. Global Energy Consumption by Source (on an energy-equivalent BTU basis) 

Sources: EIA, AltaCorp Capital Inc. 

* Non-Electricity Renewables are those used for heat generation 

 

The world needs to convert to renewable forms of energy in the future, but the very large component of 

hydrocarbons in the current energy mix only begins to indicate the challenge in the conversion.  It is not just 

the sheer volume of hydrocarbons that will make the conversion difficult, it is also their convenience with 

existing infrastructure, reliability and consistency when compared to renewables.  Moreover, hydrocarbons are 

some of the most economic forms of energy at this time, even with CO2 costs included.  As we will see, 

natural gas, a hydrocarbon, could well turn out to be the most practical “alternative" with the least 

environmental burden. 

For clarity, in this report we will use the terms alternatives and renewables interchangeably to describe hydro, 

wind, solar, biofuels, geothermal, biomass, tide and wave energy.  We categorize nuclear on its own rather 

than as a renewable or alternative.  Also for clarity, we will use the term hydrocarbon to describe coal, natural 

gas and petroleum as a group.  We will also use the term non-renewable to describe hydrocarbons. 

Why do Hydrocarbons Make up Such a Large Component of our Energy Use? 

Mankind uses hydrocarbons because, by their very chemical make-up, contain a great deal of energy in their 

unrefined and natural state; energy that can be readily accessed through simple combustion.  Additionally, 

hydrocarbons can be transported with relative ease by pipeline, rail or truck; in fact, coal and oil can even be 

carried by hand, if required.  These attributes are critical and unique aspects of hydrocarbons when compared 

to some other forms of energy including nuclear and renewables which have no transportable and naturally-

Due to their practical and 

economic benefits, 

hydrocarbons will continue to 

be a critical source of energy 

for decades to come. 

Hydrocarbons account for 84% 

of global energy consumption. 
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and natural state. 
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occurring energy in them.  The challenge we now face with hydrocarbons is that they are becoming 

increasingly difficult and expensive to extract, as compared to several decades ago when conventional oil was 

easy to find.   

It is important to note that all forms of energy including nuclear power plants, hydroelectric projects and all 

alternative forms of energy require inputs from hydrocarbons in the form of heavy equipment, machinery, 

electrical power (used in manufacturing components) and materials from petrochemicals.  Hydrocarbons 

themselves are no different; they also require inputs from hydrocarbons to be converted into a useful form.  

The oil sands of Canada are a good example where natural gas, diesel and coal or natural gas-derived 

electricity are used to extract the resource.  Biofuels such as ethanol and biodiesel also require inputs from 

hydrocarbons, in the form of fuel, for farm machinery and fertilizer created from natural gas.  Energy from the 

sun through photovoltaic solar panels is free, however, building the solar panels is expensive.  There are 

components within the solar panels made out of glass, plastics, copper and aluminum that require various 

inputs from hydrocarbons.   

We believe that natural gas will grow in its importance in global energy use over the coming decades.  

The Future for Natural Gas 

There is an abundance of unconventional natural gas within Canada and the U.S. which will help the transition 

away from the more carbon-intensive coal resources.  We see natural gas demand increasing over the long 

term, especially in the following applications: 

 Gas to Liquids (GTL) – This is the chemical process that converts natural gas to gasoline, jet fuel or 

diesel.  When natural gas prices are low and oil prices high, the economics of these capital intensive 

projects make sense.  In a long-term development plan, Talisman joined forces with Sasol Ltd. to 

assess a large gas-to-liquids (GTL) facility in Western Canada.  This type of facility would provide 

another option to LNG for accessing offshore markets.  

 Liquefied Natural Gas (LNG) – LNG is a way that inexpensive and export-limited natural gas 

could be shipped overseas.  This could be a large area of growth for North American natural gas.  In 

mid-March, Encana announced that it was acquiring 30% interest in the proposed Kitimat facility, a 

natural gas liquefaction and export facility in British Columbia.  The Kitimat facility will enable 

producers to export natural gas to overseas markets, with an associated pipeline. This facility and 

pipeline have a proposed capacity of 700 mmcf/d of natural gas to come to the market. 

 Power Generation – Natural gas electrical generation has far lower GHG and other emissions than 

coal-fired power generation.  There are new power generation facilities in both Ontario and Alberta.  

The Ontario Power Authority is currently operating 6,967 MW of natural gas-fired energy contracts, 

and the closing of coal-powered plants will create a greater demand on natural gas-fired 

replacements. With the current concerns around nuclear energy, we see an ongoing increase in 

natural gas for power generation. 

 Transportation – Compressed Natural Gas (CNG) can be used as a transportation fuel and is 

currently being used in vehicles such as buses, trains, pick-up trucks and taxi cabs.  It is more 

common in Asia, South American, Middle East, and Europe as well increasingly for industry uses 

North American. There are some diesel trains which have been successfully converted to CNG in 

North America and Peru.  The advantages to CNG include less CO2 emissions than gasoline, diesel 

or propane.  The limitation in broader application is the extended time required in refuelling and the 

need for heavy duty and expensive fuel tanks. 

Hydrocarbons will continue to be a critical source of energy for many decades to come.  The reasons for this 

are their inherent and readily-usable energy, existing infrastructure, attractive economics and increasing 

demand for inexpensive fuels in developing economies.  We will show what role hydrocarbons have played in 

the past and how we believe they will be used in the future – along with alternatives – but first, let‟s review 

what those alternatives are. 

All forms of energy, including 

alternatives, require inputs from 

hydrocarbons. 

There are many new or 

expanding applications for 

natural gas.   

Hydrocarbons will continue to 

be a critical source of energy 

for many decades to come.   
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What Can Replace Hydrocarbons? 

Renewables 

In working towards replacing hydrocarbons, there are many technically-viable renewable energy sources, 

which are shown in Figure 4 below.  We have grouped these into Biofuel Alternatives, Electrical Alternatives, 

Heat Alternatives and Natural Gas Alternatives.  All of these have the ability to replace a portion of 

hydrocarbon use.  For instance, the biofuels – ethanol and biodiesel – can replace gasoline and diesel, 

respectively.  The various electrical alternatives can replace electricity generated from coal, petroleum or 

natural gas, while the heat alternatives can also replace these same hydrocarbons. 

 

Figure 4. Renewable Alternatives 

Sources: EIA, Natural Resources Canada, AltaCorp Capital Inc. 

 

In addition to the renewables, there are also hydrocarbon-based options, which can have a lower 

environmental footprint than traditional hydrocarbon uses.  This is achieved through the use of newer 

technologies such as clean coal or the use of natural gas (the lowest carbon-intensive hydrocarbon) for 

transportation.  Coal to liquids is not an environmentally-friendly alternative, but does provide another way of 

using the vast amount of global coal resources through the conversion of coal into gasoline and diesel.  These 

options are listed below. 

Hydrocarbon-Based Options (Non-Renewables) 

 

Figure 5. Hydrocarbon-Based Options 

Sources: EIA, AltaCorp Capital Inc. 

Reduced Energy Consumption 

What might have been conspicuous by its absence up to this point is the degree to which the reduction in 

energy consumption can be a “source” of energy; this is an essential part of our energy future.  The need to 

seek advances in energy conservation is self-evident.  Not only is it the most economic, it is also the most 

environmentally attractive “source” of energy.  It is our view that mankind needs to reduce its energy needs by 

choice, or the choice will be forced upon us.   

In the next section, we look at the economics of various sources of energy on an equal energy basis.  
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Economic Reality – An “Apples to Apples” Comparison 

The public discussion regarding energy development and consumption has become increasingly important as 

environmental issues become forefront and oil prices again rise above $100/bbl.  Because access to 

inexpensive energy is critical to all economies, the issues under discussion are wide-ranging and include: 

energy conservation, greenhouse gas emissions, oil supply, alternative sources of energy, non-conventional 

hydrocarbon recovery, environmental sustainability and national security.  

One doesn‟t have to look very hard in the media to find articles regarding energy use and the necessity for 

mankind to move away from hydrocarbons and towards alternatives.  Increasing the use of renewables is 

necessary (because hydrocarbons are a depleting and non-renewable resource), but how that will be achieved 

within realistic economic terms and time frames is a question that needs to be asked.  Too often it is boiled 

down to “we need to get off our addiction to hydrocarbons and replace them with alternatives because we have 

the technological know-how to do so.”  That statement is true but many questions remain, such as: 

 How much will it cost to make the transition? 

 Can we add alternatives faster than we increase our demand for hydrocarbons? 

 Are there limits to growth in some alternatives? 

 Is the public willing to pay more for clean energy? 

 Can cash strapped governments and individuals afford to subsidize the development of new 

technologies? 

We feel it is time for an “apples to apples” comparison of the various energy technologies and the economics 

of each.  Mankind needs to transition to renewable technologies as oil continues to get more expensive as 

conventional oil gets harder to find.  However, our society is still driven by economics and individuals make a 

majority of their decisions based on price.  Although many rational people will say “we need to be willing to 

spend more on renewable solutions” our actions are not consistent with this.  It is our belief that society will 

indeed spend more for renewable solutions, but only when oil prices rise to the point that alternatives make 

economic sense.  There has been wind-powered electrical generation for over a century, but it only makes up 

0.3% of global energy supply.  This points out the economic and practical limitations of wind power; we have 

had the technology for over a century, but it is still not widely-used because it is more expensive than 

hydrocarbon-based electricity, and it cannot provide base load (consistent) power. 

It will always be the consumer that ultimately pays for higher energy prices, even if the government facilitates 

subsidies.  The consumer will pay through higher taxes, utility costs, vehicle prices (for electrical or hybrid 

cars) or prices at the pump.  The majority of consumers will continue to select the lowest-cost options; very 

few will opt for renewable sources of energy except those that can afford to do so.   

Many point out that “we have the technology to develop green energy solutions”, but this rarely takes into 

account the economic limits.  As an example we now have hybrid cars, the technology is developed, the 

vehicles can be purchased, but are they really commercial?  The answer appears to be “no” because sales of 

hybrid cars are very low even with the government subsidies that are offered.  If the fuel savings (provided by 

the hybrid technology) were significant enough to offset their higher purchase price, these vehicles would be 

more popular. 

Selecting Energy Sources for Comparison 

For this “apples to apples” analysis, we will compare several conventional sources of energy such as coal, oil 

and hydroelectricity, along with various energy alternatives including wind, solar and biofuels.  The list is not 

meant to be fully inclusive given the scope of this report and the vast number of alternatives at various stages 

of development.  However, we have selected 27 sources of energy from both conventional and alternative 

technologies that represent a cross-section of electricity and liquid fuel energy sources.  The following criteria 

were used to select the energy alternatives used in this report. 
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1. Commercialized technology exists to leverage the underlying resource.  For example, we have not 

included algae-based biofuels as we feel the technology has not been demonstrated at a sufficient 

scale to determine its long-term economic viability. 

2. The alternative must be a source of energy itself, not just a mode of converting energy from one 

form to another.  For instance, fuel cells are not evaluated here because they are not actually a 

source of energy; they convert energy from one format to another. 

3. Capital and operating expense information is available from public sources with sufficient detail to 

model the cost behaviour under a number of different assumptions/scenarios. 

The BTU – A Common Measure for all Energy 

In order to compare a diverse set of energy projects on a level playing field, we have taken the straightforward 

step of converting the output energy of the underlying resource – be it electricity, oil, natural gas, ethanol, 

biodiesel or other – into British Thermal Units (BTUs) as a common unit of measure.  In this report, the 

following conversion factors were used: 

 Electricity  –  1 MWh = 3,412,000 BTU 

 Light / Medium Oil  – 1 Barrel = 5,800,000 BTU 

 Natural Gas – 1 mcf = 1,027,000 BTU 

 Ethanol – 1 Barrel = 3,563,00 BTU 

 Biodiesel – 1 Barrel = 5,359,000 BTU 

As part of evaluating projects on an equal measure, we also consider the project life span (how long it will 

produce energy) and its capacity factor (what % of the time it produces and at what average rate).  This gives 

the total energy output (measured in BTUs) over the project‟s life.  It is important to note that in our analysis 

we identified that some projects have much longer lives than others.  Hydroelectricity projects have very long 

lives, but solar panels and wind turbines require replacement and we have assumed 30-year lives for these 

projects. 

Capacity factor can dramatically reduce what the nameplate output is, for instance an average solar panel will 

only produce 22% of its full capacity given the limited number of hours of sunshine daily and annually.  We 

assume an onshore wind project has a capacity factor of 34% and an offshore project has a capacity factor of 

39%.  Our analysis assumes energy output using current technology.  Over time there will most likely be an 

increase in output from the various technologies, but we have not attempted to make predictions in this regard. 

Capital Costs and Operating Costs 

For estimated capital costs for the various projects we have used several sources including: the U.S. Energy 

Information Administration (EIA), U.S. Department of Agriculture (USDA), company reports and other 

energy research publications.   To address the cost of capital required by investors in any allocation of funds, 

we assume that the total capital costs include both principal and interest paid over the life of the project at a 

10% interest rate, the “corporate cost of capital”.  We address cost of capital in more detail in the next section 

where we evaluate a „social cost of capital‟ and a zero cost of capital, which may be more appropriate for some 

projects and taking into account longer-term environmental issues.  In addition to capital, we then add annual 

operating and maintenance costs.  The sum of these costs in combination with the total output energy (in 

BTUs) allows us to examine energy investment on an equal economic and energy basis. 

In all cases we look at the costs involved in preparing the source of energy ready for the end-use consumer.  

For instance, the non-conventional natural gas costs include drilling, production and transportation costs to 

allow the gas to get to the burner tip.  The natural gas electrical generation is quite a bit more expensive than 

natural gas used for heating/cooking purposes because it includes all the natural gas costs plus the capital, 

maintenance costs, operating costs and operating efficiency related to an electrical generation plant.  Similarly, 
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all the liquid projects including conventional oil, oil sands, ethanol and biodiesel include any production, 

upgrading and refining costs required to get the product ready to be used in a transportation application. 

Here is an example of our methodology for ethanol and wind: 

 Ethanol – For feedstock like sugarcane, fermentation/distillation technologies are required to 

convert the sugars to ethanol.  Given that these plants use the simplest and least number of 

technologies, the capital costs tend to be the lowest.  For grains like corn and wheat, additional 

processing steps (and thus additional capital and operating costs) are required to convert the raw 

grains to sugar.  However, unlike sugar-based feedstock, the increased processing also creates 

usable by-products, in the form of distiller‟s dried grains and solubles, which are sold as animal feed 

to improve the overall economics of the process.  For cellulosic feedstock like wheat straw, more 

complex biochemical or thermochemical processing steps are used in order to breakdown the fibres 

into sugar.  These increased processing requirements are reflected in the higher capital requirements 

for cellulosic projects. 

 Wind – In wind-powered projects, the turbine is a key technology used to harness the power of wind 

and convert it into electricity.  Equally as important are the forecasting techniques and models used 

to predict the short-term and longer-term wind resource at a project site.  These forecasts are 

important to determining project economics because although the capital costs are relatively well 

known, the production, in terms of kWh actually produced, is not.  One of the key benefits of wind 

turbines is the minimal variable costs of operation, however, the upfront costs of implementing a 

wind power project can be significant. 

Of course economics alone aren‟t going to answer all questions, nor should they; there are many other factors 

to consider.  For instance, can one form of hydrocarbon energy be simply replaced by an alternative, or are 

there logistical or practical limitations?  What about the long-term environmental effects?  
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The results of our cost per BTU analysis are shown in Figure 6, for our 27 conventional and renewable energy 

projects.  We have created four groups, the first group (seven on the left) being various oil and natural gas 

production projects, followed by seven liquid fuel alternatives including ethanol and biodiesel projects.  The 

third group consists of six traditional electrical generation projects including coal, natural gas and nuclear 

while the last group includes seven electrical renewables including hydro, wind, solar and geothermal 

(including the biomass, geothermal and solar thermal technologies) which can also be a source of heat, but we 

have only considered the electrical projects here. 

 

Figure 6. Cost of Energy Comparison ($/mmBTU) (using a Corporate Cost of Capital of 10%) 

Source: Please refer to the Sources section of this report. 

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle  

For the ethanol and biodiesel projects, the operating costs are net of the revenue received for the meal by-

products.  For instance, the costs of $27.00/mmBTU for soya-based biodiesel calculated in the model includes 

the benefit of the sale of the soymeal, which in the model we have calculated as a benefit of $34.00/mmBTU.  

If this was not included, the resultant total costs would be misleading at $61.00/mmBTU. 

In addition to capital and operating costs, a central issue at this time are the environmental costs – specifically 

CO2 emissions – of various sources of energy.  We discuss, and add-in, these costs next. 
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Environmental Costs – Greenhouse Gas Emissions 

The process of producing, transmitting and consuming all energy sources, both conventional and renewable, 

has a number of environmental impacts including greenhouse gas (GHG) emissions, primarily CO2.  We 

consider the amount that is emitted for each energy source, and we show the CO2 associated with the 

production of various forms of energy in Figure 7 on the common BTU measure.  Renewables also have GHG 

emissions associated with their production – an often-ignored reality.   

 

Figure 7. CO2 Environmental Footprint 

Sources: Please refer to the Sources section of this report. 

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle 

 

 

Higher CO2 with Electrical Generation 

 As discussed in the previous section, in all of our evaluations, we consider the costs involved in preparing the 

source of energy ready for the end-use consumer.  In the case of non-conventional natural gas, the GHG 

emissions are very low but if this fuel is used for power generation then the emissions are higher due to the 

actual combustion of the gas.  The emissions are further amplified because of thermodynamic inefficiencies in 

converting heat to electricity in the plant. 
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Sources of CO2 from Various Energy Projects: 

 Oil – The process of extracting conventional oil has quite low CO2 emissions, but the conversion 

into refined products and the ultimate combustion by the end-user is where most of the emissions 

occur.  Unconventional oil such as the oil sands have greater CO2 emissions during the extraction 

process due to the more energy-intensive nature of the resource. 

 Natural Gas – Natural gas electrical generation plants tend to produce about half the CO2 emissions 

compared to coal plants.  This makes them an attractive option in the transition towards more 

environmentally friendly electricity. 

 Biodiesel and Ethanol – Most of the GHG emissions for biofuels are created during three 

processes: 1) growing/harvesting the feedstock including the production of fertilizers which is a 

highly energy-intensive process; 2) producing the biofuel; and 3) transporting the biofuels to 

market.  Most of the CO2 released during combustion processes was originally sequestered from the 

atmosphere during the growth of the feedstock.  We discuss this offset in the next section. 

 Coal – Conventional coal-fired electrical plants are large emitters of CO2 (averaging around 530 

lbs/mmBTU in our model).  However, continued advancements in technology such as super-critical 

steam plants will mean more power produced per tonne of coal burned, improving energy efficiency 

and reducing emissions on a per BTU basis.  Other technologies in different stages of research and 

development, including Carbon Capture and Sequestration (CCS) and hydrogen separation, could 

become standard in coal-fired plants of the future.  

 Nuclear – This is one of the cleaner forms of energy from this perspective because a nuclear 

reaction has no CO2 emissions.  The CO2 related to this type of power comes during the mining of 

the uranium ore and the construction of the plant.   

 Hydro – The process of harnessing the potential energy of water to drive turbines does not create 

CO2 emissions.  However, the destruction of carbon-absorbing forests, which are carbon sinks, due 

to the required flooding behind the dam, does have an impact on climate change. There is also CO2 

emitted during construction process. 

 Geothermal – Although geothermal power plants burn no hydrocarbons, the geothermal fluids 

contain dissolved gases such as CO2 and H2S, in some cases in excess of those produced by 

conventional power plants.  The specific amounts, however, will vary with the resource. 

 Solar Photovoltaic – Solar PV cells create no CO2 emissions during their operation, but CO2 is 

emitted during their construction, installation and eventual disposal. 

 Solar Thermal – Similar to Solar PV, the majority of CO2 emissions for solar thermal plants occur 

during their construction and dismantling. The levels of CO2 also vary depending on the specific 

type of solar thermal technology implemented.  

 Biomass – The majority of GHG for biomass plants is created during the operation of the plant and 

some emissions associated with the construction and dismantling of the plants.  However, the 

combustion process of biomass releases a lot of CO2 that was originally sequestered from the 

atmosphere during the growth of the biomass feedstock.  It is important to note that burning 

biomass can introduce other emission challenges, especially for particulates, CO and NOx.  

 Onshore and Offshore Wind – The main component of GHG emissions for wind farms is the 

construction process (and to a lesser degree the dismantling process).  The main contributor to the 

construction emissions is the large requirements for steel.  
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Full Life Cycle GHG Emissions 

In recent years, there has been a move towards a Full Life Cycle (FLC) analysis of GHG emissions, which 

takes into account all emissions in developing and producing a form of energy.  This is to consider all aspects 

of producing the electricity from – one might say – the Earth‟s perspective.  As mentioned above, solar power 

does not create any GHG emissions when viewed in isolation, but many resources were extracted from the 

Earth to build, install and make them functional.  Another example of FLC analysis is the use of a Well to 

Wheels (WTW) approach to the carbon intensity of different liquid fuels.  For instance, a battery powered car 

does not create any GHG emissions when looked at in isolation, but when all factors are considered including 

the construction of the vehicle, the generation of the electricity and the eventual recycling of batteries and 

disposal of the car, there are a great deal of emissions.  

In the case of CO2 emissions for fuels, we have compared the CO2 released during only the upstream 

production/recovery process in Figure 7.  It is important to note that the largest component of CO2 emissions 

related to liquid fuels occurs during the combustion phase of the energy cycle (i.e. when vehicles burn 

gasoline, diesel or biofuels).  During combustion, biofuels will have better CO2 emission performance than 

conventional fuels because most of the CO2 released was originally sequestered from the atmosphere during 

the growth of the feedstock.   

If we apply a credit for this sequestered carbon – which is the logical thing to do – the combustion emissions 

are dramatically reduced.  In our research, however, we have observed that the application of the credits for 

sequestered carbon is not applied uniformly in the literature; in some cases it is applied to feedstock 

production and in others the downstream combustion.  Interestingly, sometimes it is actually applied to both, 

which is double-counting and for a proper energy analysis; it is important to apply the credit to one or the 

other, but not both.  We believe the GHG credit for sequestered carbon should remain in an analysis of the 

downstream costs/emissions.  Figure 8 helps to illustrate the benefit of the GHG credit for the FLC of biofuel 

production and end-use consumption.  The use of biofuels is far from being “emissions-free.” 

 

Figure 8. Well to Wheels GHG Emissions Comparison 

Sources:  Please refer to the Sources section of this report. 

* 85% FFV: Flexible Fuel Vehicle burning a blend of 85% ethanol and 15% gasoline fuel 

Note: IGCC – Integrated Gasification Combined Cycle   
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A $/Barrel-Equivalent Measure 

For those more familiar with oil pricing than BTU values, we have compared costs on an oil equivalent basis 

and added this measure to Figure 9.  For clarity, in addition to calculating the cost to produce energy on a BTU 

basis, we can also compute the cost to produce the amount of energy in a barrel of light oil and we use the 

nomenclature “boe-energy” to describe this.  Having already done the analysis on a $/BTU basis, the 

conversion is elementary using the light oil energy equivalent of 1 Barrel = 5,800,000 BTU (or 5.8 mmBTU) 

to get the $/boe-energy.  For instance, ethanol from corn in the U.S., as calculated in our model, costs 

$22.00/mmBTU and to convert that to a $/boe-energy we simply multiply by the 5.8 mmBTU in a barrel of oil 

to get $129.00/boe-energy of ethanol.  This is an energy equivalency (which is unrelated to volume) $129.00 is 

the amount you would have to pay in capital, operating and maintenance costs to get an equivalent amount of 

energy in a barrel of oil.  Going forward in this report, we will show both the $/boe-energy and the $/BTU 

wherever appropriate and possible.  

The significance of the $/boe-energy measure cannot be overstated.  This puts into context the cost of various 

energy projects in the widely-understood $/bbl value, and directly indicates at what oil price these 

technologies become economic on a BTU to BTU basis.   

For instance, the ethanol from U.S. corn in Figure 9 becomes economic at energy prices of $129.00/boe-

energy basis.  Another example is sugarcane ethanol from Brazil, which is economic at energy prices of 

$72.00/boe-energy.  Oil from the oil sands is more expensive to extract than conventional light oil and these 

projects are economic, using this analysis, at energy prices of $76.00/boe-energy in the case of a SAGD 

operation and $84.00/boe-energy in the case of a mining operation.  The analysis shows that biodiesel is quite 

a bit more expensive, being economic at $163.00/boe-energy for soya biodiesel in the U.S. market and 

$185.00/boe-energy for canola biodiesel in the Canadian market.  Onshore wind turbines, offshore wind 

turbines and solar photovoltaic electricity are economic at much higher prices ($163.00/boe-energy, 

$342.00/boe-energy and $429.00/boe-energy, respectively) than oil projects. 
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Total Costs of Energy Including CO2 

In Figure 6 we did not include costs related to CO2 in our analysis, but in Figure 9 we add in a price of 

$50/tonne for all energy sources. For our analysis of the typical project, we assumed $50/tonne for CO2 credits, 

which is higher than the $20 - $25/tonne in historical trading. 

 

  

Figure 9. Total Costs for Various Energy Projects, Plus CO2 Costs at $50/tonne (using a Corporate Cost of Capital of 10%) 

Sources:  Please refer to the Sources section of this report 

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle   
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Cost of Capital 

The capital intensive nature of many large-scale energy projects, particularly alternatives, can lead to a debate 

about an appropriate cost of capital to apply in the calculation of energy costs.  In our analysis, we have 

assumed a corporate cost of capital of 10%, which is in the range of what many corporations might use in 

major capital investment decisions.  However, as accurately indicated by many in the energy debate, we need 

to consider future generations‟ access to reasonably priced energy and to a conserved environment. It is 

important to note that cost of capital – or expected rate of return by an investor – is fundamentally in conflict 

with future generations because it, by its nature, gives lower value to cash received in the future.   

The higher the cost of capital and the further away in time, the lower the value in today‟s dollar.  For instance, 

at a cost of capital of 10%, a dollar received in 10 years is worth $0.35 today and if received in 20 years it is 

worth only $0.12 today.  The implication here is that it is better to receive the dollar in 10 years rather than in 

20 years because it is many times more valuable at the earlier date.  The goal in business – in a free market 

society – is to maximize the net present value (NPV) of assets and the higher the cost of capital, the lower the 

amount of value that is attributed to future years.  This is more than just a way of doing business, it is a 

fundamental decision-making tool for all individuals. 

To take this to the extreme, it would make the most economic sense for an owner of an energy resource to 

produce all the energy today, not next week or even tomorrow; producing it today will maximize their return 

on capital, but takes no consideration to future generations.  To take the opposite extreme, the owner could 

produce no energy for 30 years and then produce it all in one day in 2041.  In this case the energy would have 

no value to the owner today, but may be of great value to his or her beneficiaries.  However, it would have 

been better for everyone – at least from the economic point of view – if the owner had produced all the energy 

today and then reinvested the proceeds over the 30 years.  These examples assume that energy prices stay flat. 

All of this discussion is to point out the fundamental problem we are facing in our society in that we are driven 

by maximizing value in today‟s dollar and this is forcing us to use the cheapest forms of energy. The result is 

we will use inexpensive hydrocarbons initially, and the more expensive alternatives are being left until they 

become economically viable or hydrocarbons become too expensive. 

Note that the higher the cost of capital, the lower the value we assign to the future, at least in economic terms.  

Now layer on environmental considerations to this, that is, how do we take into account long-term 

environmental issues when economics are telling us to focus on the short-term?  This is where the short-term 

economic advantages of hydrocarbons are in conflict with the necessary long-term environmental 

considerations.  If society only looked at things from the cost of capital point of view, everything would be 

done to maximize value in the present, with little to no consideration of the future.  To include environmental 

and other longer-term issues, a broader perspective is required.  To address (but not resolve) this cost of capital 

problem, we compared the total cost of energy, on an energy-equivalent basis, using three different discount 

rates: 

 Corporate Cost of Capital – This is the 10% rate of return we used in Figures 1, 6 and 9 that might 

be expected by private or corporate investors.  This number will range due to the required rate of 

return for various companies, but 10% is reasonable in the current environment. 

 Social Cost of Capital – This is the rate of return that would be used by governments and 

economists to determine the value of investing in social projects like energy. 

 No Cost of Capital – This approach assumes a zero cost of capital over time and can arguably be 

used in the analysis of the cost of energy and the related environmental issues. 

Of these three values, the use and calculation of a social cost of capital has prompted the most debate.  There is 

no consensus on the best approach to determining a social discount rate, but there is a general agreement that 

for longer term projects, with intergenerational and environmental effects, lower discount rates should be used 

so that a significant weight is applied to the costs/benefits incurred by future generations.  As an example, the 

Society is driven to maximizing 

value in today’s dollar, forcing 

us to use the cheapest forms of 

energy – hydrocarbons. 
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authors of a Pembina Institute (a Canadian not-for-profit sustainable energy think tank) study titled: Natural 

Credit – Estimating the Value of Natural Capital in the Credit River Watershed, note that “Uncertainty, risk, 

intergenerational equity and potential irreversibility of policy decisions imply that the social discount rate 

should be lower than interest rates set by traditional capital markets”.  We agree with this assessment and have 

calculated a social cost of capital, as discussed below. 

Calculating a Social Cost of Capital 

Some economists have argued that a good approximation of the social cost of capital is the real pre-tax rate of 

return on riskless private investments.  AltaCorp‟s estimate of the social cost of capital was developed based 

on the historical average of Moody‟s AAA long-term bond yield of 5.9%.  This value was then adjusted to 

account for taxes and inflation, and then adjusted downwards by a factor of 2% to account for the inter-

generational nature of most energy projects based on a review of discount rates used by several countries and 

international agencies.  The resulting cost of capital was determined to be 3.5%.  In comparison, governments 

around the world have used values between 0.5% and 8% as the social cost of capital for long-term projects.  

For comparison, the Pembina report performed valuations based on both a 2% and 5% discount rate. 

In the next two figures, we show the same 27 energy projects, and applied the three costs of capital.  The 

liquids projects are shown in Figure 10 and the electrical projects are shown in Figure 11. 

 

Figure 10. Cost of Capital Sensitivity Analysis  

Sources: Please refer to the Sources section of this report. 
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Note that if energy rose to the price of $145/boe-energy then soya biodiesel at a zero cost of capital would be 

economic, as shown in Figure 10.  However oil shale mining using a 10% corporate cost of capital becomes 

economic at $100/boe-energy and will therefore be developed before soya biodiesel (under a subsidy-free 

economic perspective).  In the same chart, cellulosic ethanol at a zero cost of capital becomes economic at 

$120/boe-energy.  Many would rightly argue that the best environmental choice would be to develop the 

cellulosic ethanol rather than the oil shale (with its many environmental issues) and the food-based biodiesel 

(with its ethical issues). 

 

Figure 11. Cost of Capital Sensitivity Analysis 

Sources: Please refer to the Sources section of this report. 

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle 
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Sensitivity Analysis – What Will Drive Variability in Cost 

Estimates? 

As a quick review, in Figure 9 we compared the cost of energy for a “typical” project under a specific set of 

assumptions and in Figures 10 and 11 we evaluated the same costs under three different costs of capital.  We 

do not believe that the estimates in those figures are final and indisputable; there are many factors that will 

cause these results to vary significantly including fuel prices, feedstock costs, carbon credit pricing, capacity 

factors and heat rates.  As a result, there will be a wide range of total costs per BTU (and per boe-energy) 

when various projects are evaluated; some will have lower costs than our typical project and some will have 

higher costs.  Therefore, to better understand the dynamic behaviour of total energy costs under different 

scenarios we have performed a sensitivity analysis; the drivers of variability are discussed over the next 

several pages with the final results shown graphically in Figures 24 and 25. 

Capacity Factor 

In the case of several renewable resources, the capacity factor is a key driver of the total cost of energy that is 

produced.  The capacity factor is a ratio comparing the average energy produced over a period of time to the 

energy that could have been produced at continuous full power operation during the same period (the latter 

often referred to as a nameplate rating).  The capacity factors used in our comparison of “typical” electricity 

generation projects are shown in Figure 12.  

 

Figure 12. Average Capacity Factors (Renewables and Conventional) 

Sources: EIA, AltaCorp Capital Inc. 

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle 

 

We can see that most conventional power plants like nuclear, coal and natural gas operate at relatively high 

capacity factors, indicating that the nameplate capacity of the plant is a relatively accurate indication of the 

actual amount of energy produced over the economic life of the project.  In contrast, the capacity factor for 

several renewable alternatives is relatively low.  For example, our analysis of solar photovoltaic (solar PV) 

cells is based on a capacity factor of 22%.  Therefore, a solar PV cell with a theoretical or nameplate rating of 

100 watts will only generate an average of 22 watts of power over its life, in this case because of the limited 

availability of its underlying resource (sunshine) throughout the day and night. 

  

 

There are many factors that will 

cause expected costs to vary 

significantly. 

Capacity Factor Comparison

Project Capacity Factor

Electrical Gen - Nuclear 90%

Electrical Gen - Natural Gas (CC ) 87%

Electrical Gen - Natural Gas (CC w ith CCS) 87%

Electrical Gen - Coal (Pulverized) 85%

Electrical Gen - Coal (IGCC) 85%

Electrical Gen - Coal (IGCC w ith CCS) 85%

Electrical Gen - Geothermal 90%

Electrical Gen - Biomass 83%

Electrical Gen - Hydro 51%

Electrical Gen - Offshore Wind 39%

Electrical Gen - Onshore Wind 34%

Electrical Gen - Solar Thermal 31%

Electrical Gen - Solar Photovoltaic 22%
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In Figure 13, we can see that the cost curve for a select group of renewable technologies with lower capacity 

factors show a dramatic increase in the cost of energy when the capacity factor approaches values of 30% or 

less.  

 

Figure 13. Sensitivity of Energy Costs to Capacity Factor (Alternatives) 

Sources:  Please refer to the Sources section of this report. 
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Feedstock Prices 

For biofuel projects, the price of the feedstock used to create the ethanol or biodiesel – be it corn, wheat, 

sugarcane, canola, soya or other – is a fundamental driver of the total cost of energy that is produced.  

Therefore a feedstock that can be purchased inexpensively should result in cheaper biofuel production costs.  

Figure 14 plots the price of canola, corn and soya beans over a 10-year period and shows the food crisis peak 

in 2008 and the run-up towards the current food crisis.  These higher costs are what will likely lead to the 

development of second-generation biofuels using cellulosic technology, which uses lower cost (and non-food) 

feedstock. 

 

Figure 14. Trends in Feedstock Prices 

Sources: Canola Council of Canada, International Monetary Fund, AltaCorp Capital Inc. 
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In Figures 15, 16 and 17, we compare the cost of feedstock (shown in $/tonne) used in our model and its 

impact on the overall cost (shown on a $/boe-energy and BTU basis).  The economic feasibility of these and 

other biofuels is highly dependent on the revenue generated from the sale of by-products resulting from the 

seed crushing process (in these cases soya and corn meal).  Feedstock price alone is not the only driver of 

biofuel cost; there is the benefit received from the by-products which is turned into meal for animal feed. 

 

Figure 15. Feedstock Impact on Total Energy Cost 

Sources: Please refer to the Sources section of this report. 
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In Figures 16 and 17, we illustrate the sensitivities of two biodiesel alternatives: canola and soya.  Although 

the graphs appear similar in shape, it is interesting to note that the underlying economics are different.  In the 

case of canola, roughly twice the amount of oil is extracted per tonne of feedstock, when compared to soya 

beans.  But this is offset by a reduced amount of canola meal to generate additional revenue.  Future 

fluctuations in oil-meal differentials could cause these graphs to be markedly different. 

 

Figure 16. Feedstock Impact on Total Energy Cost 

Sources: Please refer to the Sources section of this report. 

 

 

Figure 17. Feedstock Impact on Total Energy Cost 

Sources: Please refer to the Sources section of this report.   
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Heat Rate 

Heat rate is the measure of efficiency in hydrocarbon-based electrical generation plants, that is, the efficiency 

of converting the fuel (in the form of heat) into electricity.  The units are BTU per kWh and the lower the 

number, the more efficient the plant (less heat required for every kWh produced). A heat rate of 3,412 

BTU/kWh represents the theoretical no energy-loss conversion of heat into electricity and is therefore the limit 

of any power plant‟s conversion efficiency. In Figure 18, we display the heat rate sensitivity for three different 

types of coal plants and two types of natural gas plants.  A majority of coal plants run at heat rates ranging 

from 9,000 to 12,000 BTU per kWh. 

In Figure 18, we can see that the cost curves of natural gas plants vary more significantly with heat rate than 

those of coal, resulting in steeper curves.  This result is driven by the fact that fuel costs make up a large 

component of overall costs for natural gas plants. We show the scale starting at the theoretical 3,412 

BTU/kWh but stop the lines at the limit of current or possible heat rates.  For instance, we stop the line for 

coal plants at 6,000 BTU/kWh as there are technologies being developed that could in theory push numbers 

close to that level. 

 

Figure 18. Sensitivity of Operating Costs to Heat Rate 

Sources:  Please refer to the Sources section of this report. 

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle 
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 Coal (Pulverized Coal) –  8,800 BTU/kWh 
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 Natural Gas (Combined Cycle) – 6,430 BTU/kWh 

 Natural Gas (Combined Cycle w/ CCS) – 7,525 BTU/kWh 
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Fuel Prices: Coal, Natural Gas and Uranium 

For conventional coal and natural gas-based electricity projects, the price of coal and natural gas has similar 

effects to the price of feedstock for biofuels.  Therefore, a fuel (like coal) that is abundant and can be 

purchased cheaply has benefits for electricity consumers.  In Figures 19 and 20, we examine the sensitivity of 

the total cost of energy to fluctuations in fuel prices. 

 

Figure 19. Sensitivity of Energy Costs to Coal Prices 

Sources: Please refer to the Sources section of this report.  

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle 
 

 

Figure 20. Sensitivity of Energy Costs to Natural Gas Prices 

Sources: Please refer to the Sources section of this report. 

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle 
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In the case of nuclear, we can see that the total cost of energy is relatively insensitive to fluctuation in the price 

of the primary fuel. 

 

Figure 21. Sensitivity of Energy Costs to Uranium (plus Enrichment) Prices 

Sources: Please refer to the Sources section of this report. 
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The Cost of CO2  

There will be variability in the amount of CO2 produced for various projects and assumed price of CO2 credits.  

For our analysis of the typical project, we assumed $50/tonne for CO2 credits, which is higher than the $20 - 

$25/tonne in historical trading shown in Figure 22. 

 

Figure 22. CO2 Prices 

Sources: Bloomberg, AltaCorp Capital Inc. 

 

When we apply the cost of credits to the CO2 generated from the various projects we get dramatically different 

curves with the changing price of the credits. Figure 23 shows the results with the value of credits from $0 to 

$150/ tonne and, as might be expected, coal shows the steepest slope while solar PV and wind power are 

essentially flat. 

 

Figure 23. Sensitivity of Energy Costs to CO2 

Sources: Please refer to the Sources section of this report. 
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Taking into Account Range of Costs – the Range of Results 

As pointed out at the beginning of this section, there are many factors that will cause the costs of the energy 

projects to vary significantly from our “typical” projects (which were done under a specific set of 

assumptions).  There will be a wide range of total costs per boe-energy when various projects are evaluated; 

some will have lower costs than our typical project and some will have higher costs.  This is a result of 

different quality of resources and a range of operating and capital costs.  The major cost drivers, as discussed 

on pages 23 through 31, include fuel prices, feedstock costs, carbon credit pricing, capacity factors and heat 

rates.   

In the next two figures, we show the possible total cost ranges using a “barbell chart”.  The top of each barbell 

shows the upper end of possible total costs of energy for each project type; the bottom of each barbell shows 

the lower end of possible costs.  The dash on the bar bell represents our typical project.  It can be seen that 

some projects such as wind and solar have a wide range of outcomes where capacity factor plays a very large 

role.  The biofuels also have a wide range of possible costs, largely driven by feedstock prices.  In the first of 

these two charts, Figure 24, we use the corporate cost of capital of 10%.    

 

Figure 24. Cost Ranges for Energy Alternatives (using a Corporate Cost of Capital of 10%) 

Sources: Please refer to the Sources section of this report. 

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle 
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Figure 25 shows the same ranges of total costs but uses the social cost of capital of 3.5%.  Although we have 

attempted to take into account the most significant sources of conventional and alternative forms of energy and 

their related costs, we may have excluded a particular technology or a material cost consideration known to 

our readers.  We encourage anyone with detailed cost and energy output data on the technologies we have 

assessed – or any other technology – to contact us and we will gladly integrate your information in our model 

and share the results.  

 

Figure 25. Cost Ranges for Energy Alternatives (using a Social Cost of Capital of 3.5%) 

Sources: Please refer to the Sources section of this report.  

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle 
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What Happens If Oil Prices Continue to Rise? 

It is very important to note that in all of these ranges we do not include what might happen to input costs of the 

various projects if oil prices rise beyond current levels. We previously indicated that our total cost analysis 

showed alternatives become economic when oil prices rose to a certain level.  For instance, soya-based 

biodiesel in our typical cost scenario becomes economic when oil reaches approximately $160/boe-energy at 

the corporate cost of capital.  However, if oil prices were that high, then the fuel required to run the farm 

machinery to plant and harvest the soya would also be more expensive, which in turn would raise the cost per 

BTU of energy received from the biodiesel.  The higher the oil prices, the more expensive alternatives 

become, because oil is an input cost for all forms of energy, including oil itself. 

 

 

 

 

  

The higher oil prices are, the 

more expensive alternatives 

become. 
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Economic Reality – Subsidies Required 

From the preceding analysis, it is clear that many renewables are more expensive than conventional sources of 

energy.  Given that individuals will, in almost all cases, opt for the lowest-cost good or service, the more-

expensive alternatives will not be the choice of the average consumer, unless their price can be artificially 

reduced.  From the corporate point of view, a company will not invest its capital in lower-return (or 

economically unviable) projects such as wind or solar unless there is incentive to do so through some sort of 

subsidy.  Although most of the initiatives for alternative energy development come from governments, it will 

always be the consumer that ultimately pays the price, either directly or indirectly.   

In our comparison of energy costs above, we evaluated all the various alternatives without the effect of 

subsidies in order to understand the true costs of producing the energy.  The fact is that subsidies in their many 

forms are prevalent in energy markets around the world and, to be fair, there are also subsidies for 

hydrocarbon development.  Therefore, a review of subsidies is warranted in any discussion about energy 

development, and we have identified that subsidies tend to fall into one of four different categories: 

1) Direct Transfers  3) Feed-In Tariffs  

2) Preferential Tax Treatment  4) Government Policies and Regulations 

Direct Transfers 

Direct transfers usually take the form of rebates, grants or low-interest loans given to energy producers, 

consumers or intermediaries for the purpose of developing specific energy markets.  A table that summarizes 

various U.S. electricity rebates is shown in Figure 26 and examples of some energy resources include: 

 Solar – The California Solar Initiative provides rebates to consumers who install solar panels in 

their homes or businesses. 

 Renewables / Energy Efficiencies – Programs such as the USDA Rural Energy for America 

Program Grants.  These will cover up to 25% of costs associated with renewable energy or energy 

efficiency improvement projects. 

 Biofuels – Governments around the world offer countless production subsidies, crop insurance 

premium subsidies, loan guarantees and price support payments that go towards farmers, some of 

whose crops are used to create ethanol and biodiesel.  

 Carbon Capture and Storage – The Canadian and Alberta governments plan to support three large-

scale CCS projects:  $865 million for a Shell Quest CCS demonstration project; $779 million for the 

TransAlta Keephills CCS project; and $63 million for the Alberta Carbon Trunk Line project. 

 

Figure 26. U.S. Electricity Rebates 

Source: EIA 

Notes: Unallocated renewables include projects funded under Clean Renewable Energy Bonds and the Renewable Energy Production 

Incentive.    NM=Not meaningful. Total may not equal sum of components due to independent rounding. 

U.S. Electricity Subsidies

Fuel / End-Use

FY 2007 Net Generation 

(billion KWh)

FY 2007 Subsidy and Support 

($mm)

Subsidy and Support per Unit of 

Production ($/MWh)

Coal 1,946 854 0.44

Refined Coal 72 2,156 29.81

Natural Gas and Petroleum Liquids 919 227 0.25

Nuclear 794 1,267 1.59

Biomass (and biofuels) 40 36 0.89

Geothermal 15 14 0.92

Hydroelectric 258 174 0.67

Solar 1 14 24.34

Wind 31 724 23.37

Landfill Gas 6 8 1.37

Municipal Solid Waste 9 1 0.13

Unallocated Renew ables NM 37 NM

Renew ables (subtotal) 360 1,008 2.80

Transmission and Distribution NM 1,235 NM

Total 4,091 6,747 1.65

Alternative Measures of Subsidy and Support

With subsidies, it is the 

consumer that pays, whether 

through taxes, utility costs or 

prices at the pump. 

Direct transfers usually take the 

form of rebates, grants or low-

interest loans given to energy 

producers. 
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Preferential Tax Treatment 

Preferential tax treatments include tax credits, exemptions or accelerated depreciation allowances that are 

provided to energy producers to provide incentives for continued development of specific energy markets.  

Some examples include: 

 Solar – Under the U.S. Energy Policy Act of 2005, residential purchases of solar PV systems can 

take 30% of the cost of the system off their taxes. 

 Wind – The Modified Accelerated Capital-Recovery system of taxation in the U.S. has special 

allowances for the accelerated depreciation of certain technologies such as large wind projects. 

 Clean Coal – In an effort to develop clean coal technologies including Integrated Gasification 

Combined Cycle (IGCC) projects, the U.S. government has instituted tax credits for these 

technologies. 

 Ethanol – The U.S. Volumetric Ethanol Excise Tax Credit (VEETC) of $0.45 per gallon is paid to 

refiners to blend ethanol into gasoline and the Small Producers Tax Credit of $0.10 per gallon is 

provided to companies producing less than 60 million gallons per year. 

 Biodiesel – The U.S. government enacted a tax credit for biodiesel in 2004, which led to an increase 

in the production of the fuel, but the credit lapsed at the end of 2009 and volumes dropped 

dramatically as show in Figure 27.  In December of 2010 the U.S. House of Representatives voted 

to reinstate the incentive, which will most likely lead to an increase in volumes during 2011. 

 Oil Sands – The Canadian government currently has a provision in the tax act that allows certain oil 

sands capital expenditures to be written off more quickly using an accelerated capital cost allowance 

which has the effect of reducing near term taxes payable.  This provision is being phased out over 

the next three years. 

 

Figure 27. Biodiesel Production Reliant on High Diesel Prices and Subsidies 

Sources: EIA, Bloomberg, National Biodiesel Board, AltaCorp Capital Inc. 
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Feed-In Tariffs 

An alternative to direct transfers and tax incentives, which have a negative impact on government balance 

sheets, is the application of feed-in tariffs.  A feed-in tariff is a premium price, set by government legislation, 

that utilities are legally obligated to pay for certain types of energy (in addition to providing guaranteed grid 

access).  The end result of feed-in tariffs is that the incremental cost of energy due to premium prices and new 

grid connections is passed onto all energy rate payers.  Therefore, the financial burden migrates from “Joe the 

Taxpayer” to “Joe the Ratepayer.”  Some examples of feed-in tariffs include: 

 Solar – In Ontario, the renewable energy feed-in tariff program provides guaranteed prices under 

long-term contracts for energy generated from renewable sources.  In the case of solar PV projects, 

this premium pricing can be as high as $802/MWh whereas average monthly prices for consumers 

run at a fraction of that, in the range of $30/MWh to $60/MWh. 

 Wind – In Denmark, the country‟s large penetration of wind power has been driven, in part, by 

significant feed-in tariffs for wind power in the form of Public Service Obligations that appear on 

consumers‟ electricity bills. This tends to stabilize the revenue received by wind turbine operators in 

the range of €67 to €81/MWh, which is significantly more than spot market prices in the range of 

€33 to €57/MWh. 

Government Policies, Regulations and Royalties 

In some cases, subsidies can take the form of government mandates or regulations designed to encourage the 

use of specific types of energies.   

 Biofuels – Around the world, mandatory blended percentages of ethanol/biodiesel are designed to 

encourage consumption of biofuels.  In the U.S., some ethanol producers view these regulations as 

critical to continued growth in biofuel production/consumption, referring to current standards as a 

“Blend Wall” (virtual limit to biofuel production that could not be surpassed without further 

government intervention). 

 Renewables – In the EU‟s directive on renewable energy, it sets a target of a 20% share of energy 

from renewable sources by 2020. 

 Oil Sands – To encourage development of the oil sands, a more-expensive hydrocarbon resource 

than conventional oil, the Alberta government initially had in place a very low 1% royalty on gross 

revenues before the return of invested capital and 25% of net revenue after return of capital.  This 

was revised to a sliding scale scheme based on oil prices, which came into effect in 2009, where the 

royalty now varies from 1 to 9% before return of capital and from 25% to 40% thereafter.   

Tougher Decisions in Leaner Economics Times? 

The cost of subsidizing the various segments of the energy sector can take a huge toll on either government 

balance sheets or individuals through higher energy costs.  No matter what form of subsidy, it is always the 

consumer that will pay, whether through higher taxes, higher utility costs or higher prices at the pump.  During 

tougher economic times there has been a shift away from many forms of subsidies and in some extreme cases, 

retroactive reversals.  Some prominent examples include: 

• In 2000, the Renewable Energy Sources Act (EEG) introduced in Germany had feed-in tariffs over 

€500/MWh paid for several years.  In 2010, the government announced significant reductions in 

these tariffs on a go-forward basis. 

 The Spanish government has announced retroactive cuts of up to 45% in the feed-in tariffs for solar 

PV projects and has also announced cuts to wind power subsidies of 35% by 2012. 

 The Ontario Power Authority is proposing to cut the rate paid to ground-mounted solar systems by 

27% to $585/MWh for new contracts. 
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Sustainable Energy – Under What Economic Conditions? 

Alternative energy is often referred to as sustainable energy, which refers to the fact that we can continuously 

grow biofuel crops, there are unlimited amounts of sun for solar power and we won‟t run out of wind for wind 

turbines.  Ironically, it has been shown in many cases that alternatives are not sustainable without government 

support.  How truly sustainable are alternatives if they cannot survive without government subsidies?   How 

can governments sustain subsidies in the face of increasing indebtedness?  Maybe alternatives are a type of 

“Unobtainium” in practical and economic terms. 

A Comment on “Green Jobs” 

This phrase, which refers to new jobs created by the development of alternatives, is usually used in a positive 

light, but given the subsidies required for the development of renewable technologies, these “green jobs” are 

really based on businesses that might not survive without government support.  Although the development of 

renewable industries is necessary, it needs to be done in a truly sustainable way and create jobs that will be 

there for the long term, not just for the duration of a government subsidy.  Job creation only helps society if the 

jobs provide a net economic benefit. 

It has been pointed out that renewable energy projects, like solar and wind, create more jobs for every dollar 

invested than hydrocarbon projects.  This is not surprising; from our analysis of the economics of these 

projects, it would actually be expected.  This is because for every BTU of solar and wind energy produced, 

significantly more money needs to be invested – including labour costs.  Although more jobs might be created 

with renewable energy for every dollar invested, it would in fact be better if fewer jobs were produced for 

every dollar invested.  The logic here is: if total costs (including labour) were reduced on a BTU basis then the 

projects would be more economically-viable and the businesses behind them might become truly sustainable. 

To clarify this somewhat counter-intuitive argument, consider two companies competing in the same business 

sector and producing the same product (BTUs in this case, but could be any product).  One employs 10 people 

and the other five, but they both produce the same amount of product, have the same financial resources and 

pay their employees similarly.  With everything else being equal, which one will be more successful, grow 

more rapidly and continue to add jobs?  Obviously the lower-cost company, the one with fewer employees per 

product produced; the BTUs would be produced for lower cost.  Should the government subsidize the less 

efficient company to create more jobs?  That seems doubtful. 

Some might point out that oil sands projects and certain other hydrocarbon operations do receive subsidies too, 

but these rarely involve cash payments from consumers or governments.  It is usually in the form of lower 

royalties over a limited period and there is no direct movement of cash out of government coffers or 

consumers wallets. 
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Tragedy of the Hydrocarbons 

In this report, we introduce the concept of the Tragedy of the Hydrocarbons, which is a dilemma related to 

Garrett Hardin‟s The Tragedy of the Commons.  In the Tragedy of the Hydrocarbons, as we describe it, 

individuals will choose to consume hydrocarbons because they are the most economic and practical form of 

energy available.  The tragedy lies with the reality that it is not in the best long-term interest of the individual, 

society, mankind or the planet for this to continue.  This is because hydrocarbon resources are limited; as we 

continue to consume them, we continue to “empty the tank”.  We could have a relatively seamless transition to 

alternatives but, because hydrocarbons continue to be the cheapest form of energy, we will use these until 

forced to make a transition.  A transition forced upon us will not be simple or problem-free.  

Garrett Hardin‟s Tragedy of the Commons is well described on Wikipedia: 

Central to Hardin's article is an example (first sketched in an 1833 pamphlet by W. F. Lloyd) of a 

hypothetical and simplified situation based on medieval land tenure in Europe, of herders sharing a 

common parcel of land, on which they are each entitled to let their cows graze. In Hardin's 

example, it is in each herder's interest to put the next (and succeeding) cows he acquires onto the 

land, even if the quality of the common is temporarily or permanently damaged for all as a result, 

through over grazing. The herder receives all of the benefits from an additional cow, while the 

damage to the common is shared by the entire group. If all herders make this individually rational 

economic decision, the common will be depleted or even destroyed to the detriment of all. 

The Tragedy of the Hydrocarbons is similar in many ways to the Tragedy of the Commons, including: 

 The “group” in this tragedy is the billions of humans on the planet and the “commons” are the 

hydrocarbons that are available to most of mankind.  We can equate the grasses on Hardin‟s 

commons to hydrocarbons; both are a source of energy and a shared resource.  The grasses on 

Hardin‟s commons are the source of energy for the cows (and ultimately the herders); in the 

Tragedy of the Hydrocarbons the hydrocarbons are the source of energy for the global society. 

 Hydrocarbons provide one of the most economic forms of energy available, and therefore, will be 

consumed preferentially before more expensive alternative forms of energy. 

 The consumption of hydrocarbons can increase the quality of life for an individual through low-cost 

transportation, food, goods and services.  The individual receives the full benefit of the use of 

energy, but shares damage to the commons with billions of others.  The damage to the commons in 

this tragedy is the reduction of global oil reserves.  That is, increasing consumption will reduce the 

amount available for others, including future generations. 

 Conversely, consider an individual who chooses to use a more-expensive and completely-renewable 

form of energy, say wind and solar.  Although commendable, this person bears the full burden of 

higher energy costs and practical limitations of these forms of energy.  The benefits this individual 

provides to society – less pollution and the preservation of resources – are shared with billions of 

other individuals.  The net result is the individual pays a large cost for a wise choice, but gains 

essentially no personal benefit (when spread over billions of others) from his/her efforts.  Think of 

the resentment and frustration this wise person might feel when left on the side of the road with 

depleted batteries in their expensive solar-powered car while multiple gas guzzling SUVs drive past. 

 This is the tragedy: individuals will make the choice to use the cheaper non-renewable 

hydrocarbons because it is best for them at this moment.  It would be better for society if this was 

not the case, but this is how individuals will act under the circumstances. 

 To reiterate what was stated earlier, mankind will have to dramatically change its collective 

thinking to avoid this tragedy and adopt the use of alternatives before we are forced to change under 

more challenging circumstances. 
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Practical Reality – An Integrated System View 

In addition to understanding the economic realities, we believe that to objectively compare and contrast 

alternate energy sources, an integrated approach to comparing the costs and benefits of each is required, rather 

than examining one or two criteria in isolation.  In this context, integrated means taking into account all 

significant practical factors that enter into the choice of an energy source.  These include variability, certainty, 

versatility, storability, transmission system integration, environmental, and socio-economic factors.   

All too often, the notion of a “balanced” approach to comparing energy sources is to ignore economic costs 

and practical realities, and consider only CO2 emissions, which are often used as a form of trump card.  While 

we believe that evaluating pollution is necessary, it should not be done in isolation nor should we focus 

exclusively on CO2 emissions.  What about water use, as an example?  Biofuels actually use far more water 

per BTU produced than oil sands projects.  Our goal in using a broader perspective is to illustrate that there is 

not a clear “winner” – nor should there be – in the energy debate and that every conventional or renewable 

form of energy brings with it a number of advantages and disadvantages.  Society will need access to all forms 

of energy as global demand continues to grow. 

Resource Variability and Certainty 

Variability is a measure of extent to which the availability of the primary resource (be it oil, gas, wind, 

sunlight or moving water) varies over time, which can negatively impact the reliable output of an energy 

system.  Certainty is a measure of the predictability of variations (magnitude and timing) of the primary 

resource.  In order to forecast the energy supply and plan for the safe and reliable operation of electrical grids 

and other critical energy systems, a higher level of certainty for the underlying energy source is desirable. 

In most of the developed world, people have come to expect and demand low-variability and high-certainty 

energy but many alternatives do not provide either.  We discuss a few renewables from this perspective: 

 Wind – A wind turbine generates power in direct correlation to the amount of wind at the site which 

can fluctuate from one minute to the next – at some times producing at its maximum potential and at 

other points, no electricity at all.  This results in a highly variable source of energy, which also has 

very little predictability.  Despite the development of advanced wind modelling techniques, 

significant differences between forecasts and actual production levels can occur.  For example, on 

February 26, 2008 in Texas, wind generation of 2,000 MW dropped to 360 MW, an event that 

occurred hours sooner and at a rate faster than forecasted.  This unexpected drop resulted in 

emergency demand-response measures, forcing several industrial and commercial customers to 

curtail their electricity consumption.   

 Solar – Solar panels‟ power generation will vary depending on cloud cover during the day.  There is 

greater predictability when solar will produce no electricity (at night) and this can be counted on for 

electrical grid management.  Similar to wind power, the amount of energy collected from the sun 

cannot be controlled by plant operators and solar energy is not demand responsive.  If there are 

peaks or spikes in demand, the solar power cannot be relied upon requiring other forms of power 

generation to step in. 

 Hydro – Water flow from rivers can vary on an hourly basis, but the ability of dams to “store” water 

energy helps smooth the availability of hydro power.  Therefore, the resulting variability of the 

underlying resource tends only to be seasonal in nature.  Certainty is very high with hydro and 

facility operators have the ability to control this, unlike solar or wind.  Even in “dry” years, the lack 

of water can be forecast with relative accuracy, allowing grid operators to adjust the energy supply 

mix. 

 Biofuels – With improved farming techniques, many countries have been able to produce consistent 

levels of biofuels and in many instances increase production due to increased crop yields.  However, 

unlike conventional oil projects, production levels remain sensitive to variations in the weather and 
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its effect on crops.  The variability in the production of biofuels is tied to the seasons for growing 

and harvesting the underlying feedstock, such as corn and sugarcane, and this variability is highly 

predictable.  The development of cellulosic technologies will enhance the diversity of feedstock to 

produce biofuels and will help to smooth the availability of biofuel inputs.  Biofuels are storable 

which increases their certainty. 

 Unconventional Oil – The oil sands have low variability with most projects having the ability to 

maintain or increase production levels over their very long lifetimes.  However, these facilities have 

shown themselves to be vulnerable to unscheduled maintenance and shut-downs due to fire or other 

emergencies.  Like biofuels, oil is storable so this makes the resource more certain. 

Resource Versatility / Useful By-Products 

Versatility and useful by-products is an assessment of the resource to satisfy demands of different energy uses 

and other applications.   

 Natural Gas – In addition to heating and electrical generation purposes, natural gas is used for 

making plastics (polyethylene).  For transportation purposes, it is a source of propane and can be 

compressed (CNG) or converted to liquids in a GTL process and used in conventional reciprocating 

engines. 

 Oil – Oil generated from the conventional and unconventional sources, is used for more than just a 

combustible fuel source, but also serves as the primary ingredient in plastics, fabrics and other 

materials.  As a comparison, alternatives often replace only the combustible component of oil, but 

may not provide any useful by-products. 

 Coal – Coal is used as a thermal energy source, for electricity generation, but is also used to create 

coke, a primary input to manufacture steel.  Coal has significant limitations as a transportation fuel. 

 Biofuels – Ethanol and biodiesel have the potential to be used as the primary ingredient in fuel, 

plastics, fabrics and other materials.  However, this versatility is dependent on the larger-scale 

development of bio-refineries to create end-use products from the feedstock. 

 Solar PV and Wind Power – These energy sources can only be used to generate electricity; no other 

side products are created. 

Storability and Transport 

Storability is a measure of the ability of the resource to be stored for a considerable period of time without loss 

or degradation in its usability.  The ability to store energy is particularly useful when there are fluctuations in 

energy consumption. 

 Oil – Crude oil can be stored for long periods of time without loss or degradation in its usability.    

One of the greatest benefits of oil is that it is relatively stable and can be transported by pipeline, 

ship, truck and rail.  As an indication on how transportable it is, it could even be carried in a pail, if 

required. 

 Coal – Coal is probably the most storable form of energy, but not as easy to transport as oil and 

biofuels.  For this reason, coal electrical plants are usually built where the coal exists and the power 

is then transmitted to the end-user. 

 Biofuels – Similar to crude oil, biofuels have a good measure of storability. However, potential 

corrosion challenges and the fact that ethanol absorbs water mean that biofuels tend to be shipped 

by truck, rail and ship as opposed to pipelines.  This has cost implications for countries that might 

otherwise have the potential to be biofuel exporters.   

 Natural Gas – Natural gas can be stored in underground facilities such as depleted oil and gas 

reservoirs, aquifers or salt caverns.  The benefit of these storage facilities is that they improve the 

security of gas supply and increase price stability when there are seasonal fluctuations in demand.  
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This is a much more limiting form of storage than for oil or biofuel as it depends on geology of the 

area, whereas oil storage tanks can be built almost anywhere. 

 Electricity (Conventional & Renewable) – One of the greatest challenges faced by grid operators 

and electricity producers is the lack of practical and widely available utility-scale solutions to store 

electricity (other than the “stored” water behind a hydro dam).  When electricity is produced it 

needs to be used the moment it is generated.  Significant progress and cost reductions in electricity 

storage technologies could be the solution to address the intermittent nature of many alternative 

electricity resources.  These developments would also reduce the need to build excess capacity in 

electrical grids to ensure adequate supply during spikes or peaks in consumption. 

Electrical Transmission and Infrastructure 

Electrical transmission and infrastructure is a consideration of the construction, installation and maintenance 

costs for expanding and adjusting an energy system‟s infrastructure in order to collect and distribute energy 

from the primary resource.  Transmission from where the electricity is generated to where it is used is a cost 

issue due to the capital required to build transmission lines and the power losses incurred during delivery.  

Many renewable energy resources, including wind and solar power, will face geographic restrictions as to 

where they can be built and operated in the most economical manner.  The resulting energy will then need to 

be transported to large population centres.  This point can be illustrated graphically by examining the 

availability of several resources in the United States as shown in Figures 28, 29 and 30. 

 

Figure 28. U.S. Solar PV Resource 

Sources: National Renewable Energy Laboratory (NREL) 
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Figure 29. U.S. Geothermal Resource 

Sources: NREL 

 

 

Figure 30. U.S. Wind Resource 

Sources: NREL 
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Batteries – the “Gas Tank” for Electrical Transportation 

Storage of electricity is problematic for transportation purposes when compared with oil-based fuels such as 

diesel and gasoline because it is not easy to store.  Batteries are required, which are heavy, expensive, 

consume non-renewable resources, and require disposal at the end of their life, take a long time to recharge 

and have limited capacity.  Traditional hydrocarbon fuels can be contained, transported and transferred from 

one location to another with minimal difficulty and there is an established infrastructure of refuelling stations 

throughout the world.  There are significant limitations to the use of electricity for the purpose of 

transportation because of this storage problem. 

To put this in context, think of a gas tank in a car, which is technologically very simple, can be manufactured 

for a reasonable cost and is very light.  To stress the simplicity of storing gasoline, diesel, or biofuels, they 

could even be placed in a pail and used directly from this container (but admittedly not very safely).  This tank 

can be filled with an amount of fuel that can transport an average North American car for 600 to 800 

kilometres and can then be refilled in a matter of minutes to travel that distance again. 

Now compare this with a battery-operated car where the cost of construction of the battery is very high and 

current technology allows these vehicles to travel only 100 to 200 kilometres on one charge and take several 

hours to recharge. 

The Myth of “Emissions Free” Electric Cars 

Electric cars are not, and never will be, “emissions free.”  Assuming that electric cars are distributed widely 

throughout the United States, 51.2% of these cars will actually run on coal (the amount of coal-fired 

electricity, measured on a BTU input basis).  Similarly, 44% of global electrical power is generated from coal, 

so assuming widespread use of electric cars approximately 44% of them will be running on coal-generated 

electricity.  The technology of electric cars is actually allowing cars to run on coal.  It is a stretch to claim 

“electric cars are leading a green revolution” when half of them will be powered by coal, the most emissions-

intensive hydrocarbon.  

The fact that electric cars will not be consuming gasoline is only beneficial if the electricity is being sourced 

by nuclear, wind, solar or hydro.  If the electricity is being generated by coal, the planet is worse off than if a 

conventional automobile were used. 
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Socio-Economic Impact 

Many of the debates about using different energy alternatives derive from socio-economic impacts.  The 

impacts can be difficult to quantify for comparison purposes but are important none-the-less, and are 

categorized below: 

Sustainability/Renewability 

Sustainability is a measure of the ability to reliably develop resources to meet the needs of humanity in the 

short term and for future generations. 

 Biofuels – The sustainability of certain first generation biofuels is questionable if volumes were to 

increase to more significant percentages of global production levels, given the constraints of 

available arable land. 

 Biomass – Energy systems based on biomass feedstocks are only as renewable as the policies which 

guide the harvesting of feedstocks, particularly those feedstocks that do not grow quickly. 

 Coal – Although not a renewable resource, the significant level of coal reserves in many countries is 

a primary driver for its use in electricity generation.  For example, according to the ERCB, Alberta 

has established reserves of 33.4 billion tonnes, which represents over 1,000 years of supply at 

current Alberta production levels. 

Energy Security  

Energy security is a measure of the ability of a country to provide a secure and stable energy system that isn‟t 

dependant on resources imported from other countries or regions of the world.   

 Oil – The dominance of global oil production by OPEC member nations and other state-controlled 

oil companies, are reasons that energy security and independence dominates many discussions of 

energy development.  The current events in Libya highlight this concern. 

 Coal – The fact that significant coal reserves exist in over 70 countries reduces the chance for 

OPEC-type control. 

 Natural Gas – The better geopolitical distribution of natural gas reserves, particularly shale gas, 

positions this resource as a short and medium-term option to reducing many countries‟ dependence 

on imported crude oil. 

 Wind / Solar – The relatively universal nature of wind and solar resource means that it can serve to 

meet the energy security needs of many countries.  It is important to note that the quality of the 

wind resource will vary dramatically within each country. 

Expertise and Jobs  

Expertise and jobs are the measure of a country`s ability to provide jobs to its citizens and develop expertise 

from the development of a primary resource.  An evaluation of energy resources also needs to consider if a 

country possesses the requisite knowledge, skill set and general know-how to leverage the full potential of a 

particular energy resource.  Even with the scientific know how in place, countries need to determine if they 

have the sufficient resources (people and capital) to undertake efficient development. 
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Environmental Impacts – Water Use 

Water usage is the measure of the amount of water used in the energy process across all parts of an energy 

system.  Water plays a critical role in many conventional and alternative energies, and is used for several 

purposes including:  1) the production of a fuel/feedstock; 2) the generation of electricity via steam; and 3) the 

transfer of heat via a wet cooling process. 

 Oil and Natural Gas – Water is used as an input for drilling and fracturing processes, and can 

reduce the quantities of groundwater and/or surface water available for other purposes.  

Additionally, water is produced as an output from exploration and development wells and can be 

saline or contain other contaminants, which can impact the quality of groundwater and surface 

water.  

 Oil Sands – The mining and in-situ processes for oil sands require significant amounts of water for 

the separation of the bitumen from the sand reservoir.  In mining projects, the associated tailings 

ponds can impact the quality of ground and surface water. 

 Biodiesel and Ethanol – Water is used in the processes of growing the feedstock crops; the water 

footprint of biofuels is particularly large when the cropland requires irrigation. 

 Coal and Nuclear – The mining process for coal and uranium can produce significant amounts of 

water; the resulting tailings can impact the quality of groundwater and surface water.  The electrical 

generation process also requires significant amounts of water as part of a cooling process. 

 Hydro – The magnitude of hydropower production varies directly with the amount of water 

available, therefore larger reservoirs can displace more hydrocarbons.  Unfortunately, these large 

reservoirs can lose large quantities of water due to evaporation. 

 Biomass and Geothermal – Both of these electrical generation processes require water in cooling 

processes.  Biomass electrical plants can also require additional water if irrigation is required for the 

biomass feedstock.  

 Solar Thermal – Solar thermal plants require water in order to convert solar energy into steam used 

to generate electricity. 

Figure 31 shows the results of our research, with surprisingly-high volumes of water use for the biofuels 

related to production of feedstock crops – note that the scale in the figure is logarithmic.  The various 

hydrocarbon sources of energy use up to 20 barrels of water per boe-energy while the biofuels use thousands 

of barrels of water per boe-energy.  Even hydroelectricity is higher than the hydrocarbon sources, due to 

evaporation from the lakes behind the dams.  

In this analysis we do not include any component of recycling in any of the energy sources.  For instance the 

oil sands can use up to 18 barrels per boe-energy, but this does not include the effect of the 75 to 90% 

recycling of water at the plants, which would reduce the water requirements to 1.8 to 4.5 barrels per boe-

energy.  Also, in-situ projects mostly use non-potable water, but we do not give any credit for this either. 

Similarly, how is the evaporation of water from a hydro project treated?  The water will return to the earth 

through rainfall, but it is removed from the particular watershed where the dam was built.  

Clearly, this is a very complex subject and there are many issues related to water that need to be addressed. 

These include what should be considered a “use”, what uses are a concern for human consumption, what are 

the environmental impacts and where might water be preserved or recycled. 
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Figure 31. Comparison Water and H2O Use – Logarithmic Scale 

Sources:  Please refer to the Sources section of this report. 

Note: CC – Combined Cycle; CCS – Carbon Capture and Sequestration; IGCC – Integrated Gasification Combined Cycle 

 

The majority of water use associated with biofuels comes from the rainfall and irrigation water used to grow 

the feedstock.  The industrial process of converting the same feedstock into biofuels is very small by 

comparison.  For example, the conversion process for corn-based ethanol usually requires about 3 barrels of 

water per barrel of ethanol (net of recycling).   

To validate the magnitude of water required for biofuels that we gathered from several sources, we can convert 

agricultural water use, commonly measured in acre-feet, to barrels of water to better contrast it to the volumes 

of output energy. 

 1 acre-foot of water is the volumetric equivalent of 12 inches of rain and irrigation over one 

acre of land.  This is equivalent to 7,759 barrels of water. 

 1 acre of corn can be used to produce roughly 9.4 barrels of ethanol or 5.8 barrels of boe-

energy. 

 

Therefore, each foot of rain and irrigation required to grow corn, for conversion into ethanol, results in a water 

use ratio of roughly 1,337 barrels of water per barrel of oil equivalent energy.  Although water requirements 

for corn-based ethanol are high, it is important to note that the water requirements for some alternative 

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

W
a
te

r 
U

s
e
 (

b
a
rr

e
ls

/B
O

E
 -

E
n
e
rg

y
)

Environmental Footprint (H2O) - Conventional and Alternatives

Water Use (barrels/BOE - Energy)



The Energy Reality 

The Energy Reality APRIL 2011 pg 48 

biofuels, such as soya-based biodiesel, can be even higher because more water is required to grow the 

underlying feedstock. 

Some will argue that rainfall, as it occurs naturally, shouldn‟t be counted as a contributor to water use for 

biofuels.  Others will counter with the view that the majority of that rainfall is necessary for the process of 

growing feedstock and that same rainfall, if not diverted for agricultural purposes, would in large part 

replenish natural water aquifers, rivers and lakes.   

Figure 31 illustrates that water is a necessary ingredient in the production of most conventional and alternative 

sources of energy.  The water may be used in different ways and take different forms (fresh vs. saline, new vs. 

recycled), which can make comparisons of usage challenging, but it is clear that without water most forms of 

energy that power our modern society could simply not be produced. 

Integrated System View - Summary 

An integrated system approach to analyzing energy resources provides a sound context from which to compare 

conventional and alternative energy sources.  This broad perspective sheds a light on two problematic 

characteristics of the energy debate: 

1. Despite what many would argue, there is not a clear “winner” (or “loser” for that matter) in the 

energy debate and that each form of energy has distinct advantages and disadvantages.   

2. Many energy systems‟ problems, such as the need to reduce energy costs and environmental 

impacts, are not associated with a specific resource but instead are shared by many.  Attempts by 

different industries to vilify each other can be described as “the pot calling the kettle black”. 

We believe that to address these problems we need to refocus the energy debate towards shared solutions.  The 

development of new water recycling technologies can just as easily reduce the fresh water required for 

synthetic crude from a mining oil sands project in Alberta as ethanol from a plant in Iowa.  Advancements in 

combined cycle heat engines can improve efficiencies in a coal power plant in the same manner as a 

geothermal equivalent.  Conventional and alternative energy technologies located at the same site could reduce 

the need for additional infrastructure, lowering energy costs for everyone.   

  

We need to refocus the 

energy debate towards 

shared solutions. 
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Practical Reality – What Would it Take to Replace 

Hydrocarbons? 

Global Liquid Consumption to be Replaced 

Figure 32 shows where liquids (predominately crude-oil derived products) are used on a global scale, which 

shows the predominance of transportation.  The reason we show this is to indicate how important liquids are 

when considering what alternatives might be usable as a replacement.  In the transportation sector, we can see 

that oil is the dominant source of energy.  In fact, transportation accounts for more than 50% of the global 

consumption of liquids. 

 

Figure 32. Global Liquids Consumption by End-Use 

Sources: EIA, AltaCorp Capital Inc. 
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Global Transportation Energy Use from all Sources  

Global transportation energy use includes all forms of transportation such as rail, air, car, and shipping.  In 

Figure 33 note how important petroleum (oil) is, at almost 94%; this is due to the simplicity of handling and 

the existing infrastructure.  To point out the obvious, gasoline and diesel are much easier to handle and 

essentially all automobiles can easily stop at a gas station to refuel. 

 

Figure 33. Global Energy Consumption of Transportation by Fuel Type 

Sources: EIA, AltaCorp Capital Inc. 

Biofuels to Replace Crude Oil? 

To better understand the limitations of transitioning to renewable energy, we have analyzed a few scenarios 

where a conventional energy source is replaced with renewable alternatives.  There will always be limitations 

with alternatives‟ ability to replace very large volumes of hydrocarbons. To put the magnitude of the problem 

in context, here are some comparisons: 

 To replace 84.4 million bbls/day of global oil production with corn ethanol, it would take a corn 

field the size of the United States, China and India – combined. 

 Note that this area is actually greater than the currently-used arable land in the world.  If 

mankind was to convert all of the land now being used for growing crops we would only 

be able to replace 54 million bbls/day of oil.  This represents only 64% of current global 

oil production. 

 If all the arable land in the U.S. was converted to corn for ethanol production – leaving no land for 

growing food – the total amount of ethanol would only replace 74% of the country‟s imports. 

 To replace the United States‟ oil imports with ethanol, it would require corn fields covering 25% of 

the country.  This represents about 1.4 times the amount of arable land available to do so.  

This analysis is done on an energy equivalency basis and does not take into account the fact that ethanol 

doesn‟t provide many of the petrochemicals that crude oil does. 

In the transportation sector, oil 

is the dominant source of 

energy at 93.8%. 
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Countries with more arable land – such as the United States, India, Russia, China, Brazil, Australia and 

Canada – have the potential to be more dominant players in the worldwide production of biofuels.  Other 

regions, like Europe, are constrained by a smaller amount of arable land and will likely explore other 

renewable energy sources.  This conclusion is supported by our analysis of global ethanol and biodiesel 

production, shown in Figure 34, where ethanol production in the U.S. and Brazil accounts for approximately 

three-quarters of global biofuels production.  This is consistent with both countries being in the top five 

countries in terms of total arable land (India, Russia and China are the others). 

 

Figure 34. U.S. and Brazil are Dominating the Biofuels Scene 

Source: EIA, AltaCorp Capital Inc. 

 

Note that meal by-products are a key part of what make biofuels economic.  That is, the material that is left 

over after the fuel has been produced can be used as feed for livestock and has a dollar value which offsets the 

cost of buying the feedstock in the first place.  However, if biofuel production ramps up dramatically, to the 

point where supply exceeds demand, then the value of the meal drops and along with it the economics of the 

projects. 
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Other Sources of Ethanol – Switchgrass and Cellulosic 

Switchgrass is a perennial plant that does not need to be replanted every year (meaning potential cost savings 

for farmers of this crop) but still takes up arable land – land that could be used for food crops.  It is often 

argued that switchgrass can be grown on more marginal lands that aren‟t suitable for food production, but 

yields will be lower.  The corresponding factor is that a more conservative estimate of switchgrass yields is 

warranted in this case because they will be grown in those marginal areas where the soil conditions and 

amount of rainfall aren‟t as conducive to growing crops as prime arable land. 

Cellulosic technology is not commercially viable, but there is a great deal of research going into this process to 

make it economically attractive.  This technology creates ethanol using non-food feedstocks such as wood, 

wheat straw, corn stalks and biomass waste.  However, the process involves more expensive processes that 

involve either a biochemical or thermochemical conversion to breakdown the feedstocks.  There are good 

reasons to research this technology as it has many advantages including: 

 Cheaper Feedstock – The feedstock is normally a waste product, making it inexpensive. 

 More Diverse Feedstock – Various technologies are designed to take advantage of different 

feedstocks, depending on what is available in the area. 

 No Competition for Food – The feedstocks are usually parts of plants that are not edible, or other 

non-food waste.  The moral debate associated with food based ethanol is not an issue with 

cellulosic. 
  

The moral debate associated 

with food based ethanol is not 

an issue with cellulosic. 
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The Ethics of Biofuels 

This is the “food for fuel” issue.  The pivotal question in this debate is “should food crops, or land otherwise 

dedicated to food crops, be used for the production of transportation fuels?”  The answer for many is a 

definitive “no”, especially when the world is facing another food crisis.  Using food crops for fuel will only 

further increase the price of corn, wheat and other biofuel feedstocks, and push more low-income families into 

poverty.  Given the magnitude of the problem, we suggest limiting the use of biofuels because they are taxing 

an already over-burdened global food system. 

How significant is the amount of food-based feedstocks used for ethanol production in the United States?  Our 

analysis has shown surprising results: 149 million people could be fed for a year with the amount of corn that 

is annually used to create ethanol in the U.S.  That is not a mistake or a misprint, 149,000,000 people globally 

could be sustained every year with the 38.7 million tonnes of corn annually grown in the U.S. to produce 

ethanol for blending with gasoline through government incentives and mandates.  We suggested the adjective 

“surprising” but the strongest words about this issue have been used by Jean Ziegler, Chair of the United 

Nations Human Rights Council‟s Advisory Committee who stated:  

“So it is a crime against humanity – it’s a crime against humanity to convert agricultural 

productive soil into soil…which will be burned into biofuels” 

    Jean Zeigler, October 26, 2007 

Food for Fuel – the Math 

We can put the scale of U.S. corn production for ethanol into perspective by examining the caloric equivalent 

of the corn and comparing that to the number of Calories required for sustaining an individual.  Our 

methodology is outlined in the following steps and these calculations are also summarized in Figure 35, 

including the sources of data. 

Step 1 – How much U.S. produced corn is used for Ethanol production? 

 According to the USDA in 2009, the U.S. produced 13,110 million bushels of corn, of which 

4,568 million bushels was used for ethanol.  This amount of corn by weight is 115.1 billion 

kilograms.  

Step 2 – How many Calories in this Corn? 

 According to the Food and Agriculture Organization of the United Nations (FAO), the global 

corn used for food in 2007 averaged 3,020 Calories per kilogram (we used this conservative 

number instead of the USDA‟s own Nutrient Database where 1 kilogram of corn contains 

approximately 3,650 Calories). 

 Therefore, the 4,568 million bushels of corn used for ethanol has a caloric equivalent of 350 

trillion Calories. 

Step 3 – How Much Food Corn Could be Grown in Place of Industrial (Ethanol) Corn? 

 In the interest of keeping a conservative estimate of people that could be fed, we have assumed 

that yields of food-based corn are one-third of that of the industrial corn.  This is based on a 

review of global corn yields published by the FAO, where corn yields in most countries range 

between one-half to one-third of the U.S. industrial corn. 

 Therefore, the food corn grown in place of industrial (ethanol) corn would have a caloric 

equivalent of 117 trillion Calories. 

Step 4 – What is the Recommended Caloric Intake of an Average Person? 

 According the USDA, the estimated caloric needs for people vary by age, gender and physical 

activity, and range from 1,000 to 3,200 Calories per Day.  We have selected an average of 2,000 

Calories per day based on this data. 

149 million people could be 

fed with the corn used to 

create ethanol in the U.S. 

The corn used for ethanol in 

the U.S. has a caloric 

equivalent of 350 trillion 

Calories. 

We have assumed that 

yields of food-based corn 

are one-third of that of the 

industrial corn. 
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 To account for the difference between food production and consumption (due to spoilage & 

waste), we increased this amount by 8% (double the global estimated waste for corn (maize) 

published by the FAO). 

 Therefore, the average person should consume 788,400 Calories per year. 

Step 5 – How Many People Could be Fed With This Corn? 

 To calculate this number we simply divided the Calories in the corn by the caloric requirements 

of our average person with the result being 149 million people. 

 

 

Figure 35. U.S. Corn Production and Caloric Equivalent 

 

To put this in context, we did the following calculation.  If a 100,000 bbls/d oil sands mining project were 

brought on stream for the sole purpose of replacing ethanol production, the corn otherwise used for this fuel 

could feed 34 million people on an ongoing basis.  Even though many in the U.S. do not want Canada‟s “dirty 

oil”, we suggest it may be a contribution to humanity if it were used to displace ethanol production.   

Frankly, a better option for the United States might be to reduce energy consumption and use these savings to 

limit ethanol production.  If the country dropped its oil consumption from all sources by only 1% and this 

reduction was used to offset ethanol production, the feedstock land could feed 64 million people every year 

and continually. 

 

  

U.S. Corn Production and Caloric Equivalent

Step Calculation Total Source(s)

1 U.S. Corn Production Used for Fuel Ethanol 4,568 Million Bushels / Year USDA Quick Stats and Feed Grains Databases

2
Caloric Equivalent of U.S. Corn = 4,568 million bushels x 

56 lbs/bushel x 0.45 kg/lb x 3020 Calories/kg 
 350 Trillion Calories / Year

FAO Food Balance Sheets Database; USDA National 

Nutrient Database for Standard Reference Database

3
Caloric Equivalent of U.S. Corn (Food Corn 

Replacement) = 350 Trillion Calories (per year) x 1/3 
117 Trillion Calories FAO Crop Production Database

4
Caloric Requirements per Person = 2000 Calories per 

capita/day x 108% (spoilage/w aste) x 365 days/year 
788,400 Calories per Capita / Year

FAO Commodity Balances Database; USDA Dietary 

Guidelines 2010 Policy Document

5
Number of People that Could be Fed = 117 Trillion 

Calories  ÷ 788,400  Calories per capita
149 Million People

If a 100,000 bbls/d oil sands 

mining project were brought on 

stream to replace corn ethanol 

production, the feedstock land 

could feed 34 million people. 

If the U.S. dropped its oil 

consumption by only 1% and 

this was used to offset ethanol, 

the feedstock land could feed 

64 million people. 
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Practical Reality – Replacing U.S. Coal-Fired Electricity 

Coal currently produces 51% of the United States‟ electrical generation as shown in the chart below, which is 

seven percentage points higher than global electrical generation of 44%.  It is important to note that this 

percentage is based on the amount of energy input, in BTUs, to generate the electricity, rather than energy 

output.  On this basis, the effect is that coal is a higher percentage than it would be if it was measured on an 

output basis, since coal-fired electricity is less efficient than other forms of electrical generation.  If we were to 

look at electrical generation on an output basis, we would see that coal provides about 45% of the U.S.‟s 

electricity.  However, we use the input measure to be consistent with the shared BTU metric used in this report 

for comparing various forms of energy. 

 

Figure 36. United States Electrical Generation by Source 

Sources:  EIA 2010 International Energy Outlook, AltaCorp Capital Inc. 

Note: Percentages based on energy inputs on a BTU Basis.  On a kWh output basis, coal would represent approximately 45% and 

natural gas would represent approximately 23%. 

 

Coal is not a good environmental choice for electrical power generation as it has higher CO2, SO2 and NOx 

emissions when compared to other forms of generation.  However, there are good reasons why coal makes up 

such a large percentage of generation; it is plentiful and inexpensive, the technology is simple and can provide 

excellent base load capacity – a critical element of a stable power grid.   

It will be impossible to convert all coal generation capacity to solar and wind in the next fifty years.   

Electrical consumers require reliable and on-demand power, which cannot be provided by wind and solar.  

Even in those areas where wind and solar farms will be installed, back-up power generation needs to be 

available for times when the wind is not blowing and the sun is not shining.  Although there are other options 

such as nuclear and natural gas-fired electricity that could replace some coal production, the complete phase-

out of coal is a long way off.  

There are good environmental reasons to reduce coal-fired electrical generation with the amount of CO2 that is 

put into the atmosphere.  To put into context the amount of CO2 that is emitted by U.S. coal, it is about 50 

times the amount of CO2 emitted by the oil sands as shown in Figure 37. 
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Figure 37. Carbon Dioxide Comparisons 

Sources:  EIA, CAPP, AltaCorp Capital Inc. 

 

Converting from Coal Power to Solar? 

If a technology can be developed to store large amounts of electricity generated from solar and wind power, 

this conversion might be possible.  There are, however, many substantial hurdles at this time to the storage of 

electricity on a massive utility scale required in developed economies.  There are smaller applications, such as 

electric cars, where batteries can play a role but reality is that essentially all large scale solar and wind 

electrical energy must be consumed the instant it is produced. 

To show how significant the challenge of converting coal-fired electrical power to solar we provide the 

following comparisons: 

 To replace the coal-fired electricity in the United States, it would take solar panels valued at $4.4 

trillion.  Note that this power needs to be used when it is generated, or be stored in batteries for 

when it is required.  The practical limitation to solar power is that we have no control on when it is 

produced. 

 In addition to the solar panels themselves, batteries would be required to store power for use during 

darkness and periods of cloud cover.  This is not a trivial exercise; it would take approximately nine 

billion car batteries (those used in typical cars for starting the engine), costing about $950 billion.  

Nine billion batteries represents approximately 34 times the number of batteries currently in use 

(there are about 260 million registered vehicles in the United States).  It is actually not realistic that 

car batteries be used for storing this amount of electricity, this comparison is only to show the 

magnitude of the problem of replacing coal with alternatives.  With current battery technology it is 

impossible to store meaningful amounts of solar powered electricity. 
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Converting from Coal to Wind? 

A similar challenge exists if trying to replace coal-fired electrical power with wind power.  To put this in 

context we provide the following comparisons: 

 To replace the coal-fired electricity in the United States, it would take 580 million residential-sized 

wind turbines (1000 watt units), which would cost approximately $2.7 trillion. 

 Instead of residential-sized wind turbines, it would take 390,000 large wind turbines (1.5 MW 

units), which would cost approximately $1.4 trillion.  Note that these are at current prices, and if 

there was a dramatic increase in the demand for wind turbines (without a corresponding drop in 

construction costs per unit), the prices would increase, so the actual costs would be much higher. 

 Similar to solar power, some of the electricity generated from wind turbines would have to be stored 

in batteries for use during periods of calm or low wind-velocity periods.  Again, to use the car 

battery as a measure it would take 7.5 billion of these batteries, which would cost almost $800 

billion.  This cost excludes any other infrastructure related to these batteries, including inverters 

which modify the DC (direct current) from the batteries to AC (alternating current) for general 

household use.  

Converting from Coal to Oil Sands? 

Although to some this may sound ironic or illogical, there would actually be a reduction in CO2 emissions per 

BTU produced if coal-fired electrical plants were shut down and power plants fuelled by synthetic oil from oil 

sands were built in their stead.  Although there is a great deal of criticism of the oil sands as “dirty oil”, it is 

less carbon-intensive than coal.  It has been suggested that the United States should not import “dirty oil” from 

Canada, but the U.S. would actually improve its environmental footprint if it imported more oil sands crude 

and used this crude to offset coal-fired electrical generation.  This, of course, will not happen because of the 

higher cost of oil when compared to coal. 

Converting Coal to Natural Gas Power? 

This is probably the most realistic option for the United States.  Natural gas is plentiful with new extraction 

technologies, therefore it is inexpensive and has much lower CO2 emissions than both coal and oil.  With the 

lower natural gas prices it makes more sense than ever to move away from “dirty coal." 
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Practical Reality – Replacing Global Coal-Fired Electricity 

Over 98% of electrical generation – including hydro, nuclear, biomass, coal, natural gas and petroleum – is 

made up of sources that can provide base load power.  This points to how we use electricity; we expect it at all 

times and we don‟t even question that it will be there when demanded.  This attribute is what makes the use of 

solar, wind and other renewables problematic.  Our society has become accustomed to this readily available 

power and will make the conversion to solar and wind very difficult.  We will always need this base load and 

on demand power, and therefore, renewables will play a smaller role for many years until we develop smart 

grid technologies. 

 

Figure 38. Global Electrical Generation by Source 

Sources:  EIA 2010 International Energy Outlook, Earth Policy Institute, AltaCorp Capital Inc. 

Note:  Percentages based on energy inputs on a BTU Basis 

 

The amount of electricity that is generated globally from coal is 84.5 quadrillion BTUs every year.  The coal 

generation in the U.S. represents 25% of this, at 20.8 quadrillion BTUs.  The problems related to system 

integration, generation consistency, and electrical storage are even more complex, especially in developing 

economies where coal will be the cheapest source of electricity.  To put this into context, 84.5 quadrillion BTU 

is equivalent to the energy in 40 million bbls/d of oil production, which represents almost half of the current 

global oil production. 
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Scenarios for Energy Growth and Conversion to Alternatives 

For this analysis, we continue to use the BTU as a common measure in which all forms of energy can be 

compared, whether the energy comes from hydrocarbons, hydroelectricity, alternatives/renewables or nuclear.  

The BTU measure also allows us to directly compare the sources, regardless if the energy comes in the form of 

heat or electricity.  The chart below shows the increase in global consumption in energy over the last 30 years, 

which has grown by a surprisingly-high 72% to over 500 quadrillion BTU in 2009 from 292 quadrillion BTU 

in 1980.   

Although the term „quadrillion BTU‟, or in the shortened form, „quad‟, is not an everyday term, it is useful in 

that it allows total energy use to be shown from all energy sources on an equal basis and on a global scale.  To 

put one quad in context, it is equivalent to approximately 170 million barrels of oil.  With mankind currently 

burning through approximately 500 quads a year in energy, this translates to about 230 million barrels per day 

of oil equivalent, or 2.7 times current oil consumption of approximately 84 million barrels per day.  Global 

society has a great deal of work ahead to convert to renewables with total renewable energy (including 

hydroelectricity) consumption steady at approximately 10% over the last 30 years.  Note that six percentage 

points of this 10% is hydroelectricity, which means that non-hydroelectric renewables represent only 4% of 

total energy consumption.  Biodiesel, ethanol, solar and wind are essentially imperceptible in Figure 39, but 

they will increase on both an absolute and a percentage basis.  This will occur out of necessity, at some point, 

as hydrocarbons become too expensive and/or scarce, but earlier adoption will happen through government 

and personal initiatives.   

Observe on this chart how significant the growth of coal is, largely due to a dramatic increase in the number of 

coal-fired electrical plants in China over the time period.  For the economic reasons discussed previously, coal 

is an attractive source of energy (setting aside, temporarily, the environmental concerns), especially for a 

developing economy such as China‟s, where a great deal of this inexpensive resource exists. 

 

Figure 39. Global Energy Consumption by Source 1980 – 2010 

Sources: EIA, Earth Policy Institute, AltaCorp Capital Inc. 

Note: Renewables Percentage includes Hydro and all other renewables 

* Non-Electricity Renewables are those used for heat generation 
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Growth in Alternatives to 2050 – the Short Term 

The next two Figures, 40 and 41, show the increase in global energy consumption to 2050 with an assumed 

increase of 1.2% per year.  Under this growth rate, energy consumption grows by almost 60% to over 816 

quadrillion BTUs from approximately 502 quads in 2009.  Although, this rate of growth is not unreasonable 

(being in the range of other publically-available forecasts) the resulting absolute increase in consumption of 

300 quads can arguably be described as “troubling.”  Troubling in the sense that 314 quadrillion represents 

approximately three times the current energy use of the United States.  The ability of mankind to extract this 

amount of energy from the earth over the next 40 years will be a monumental – if not impossible – task. 

 

One of the main reasons we will have a hard time replacing hydrocarbons with alternatives is because our 

demand for energy is growing so dramatically.  The task of converting to alternatives is a classic case of one 

step forward and two steps back.  It will be very difficult to meet increased energy demand while at the same 

time trying to convert to alternatives. 

 

Figure 40 shows our base case, with a moderate adoption of alternatives and where renewables outpace overall 

energy consumption with an increase to 20% of total energy consumption in 2050 from 11% in 2009. The 

absolute amount of renewable energy increases to 161 quadrillion BTUs in 2050 from 55 quadrillion in 2009, 

which represents a 193% increase in renewable energy.  In this case we use differing growth rates depending 

on the type of renewable energy:  

 Hydro (2.0%) – The largest component of renewable energy will continue to remain so over the 

medium term, growing at a steady rate 2.0%, which is still large given its current contribution to 

global energy production. 

 Biomass/Waste, Non-Electricity Renewables (2.6%) – We anticipate biomass/waste and non-

electricity renewables will grow at or near the overall renewable growth predicted by the EIA at 

2.6%. 

 Geothermal (2.6% until 2030, then 3.0% until 2050) – We anticipate that improved development 

techniques will lead to a bump in geothermal development in the medium term. 

 Wind, Ethanol and Biodiesel (8.0% until 2030, then 4.0% until 2050) – These renewable 

technologies have exhibited the greatest growth recently and this will continue in the short term.  As 

the relative size of these renewable energies grow, however, the increase in market size as a year-

over-year percentage will start to diminish.  Additionally, these technologies will begin to face a 

variety of constraints (and opposition) as they achieve larger sizes, including arable land constraints 

and ethical issues for ethanol/biodiesel, and infrastructure limitations for wind, solar, tide and wave. 

 

 Solar, Tide, Wave (8.0% until 2030, then 6.0% until 2050) – Similar to wind, ethanol and 

biodiesel, these renewables have shown significant growth, but the year-over-year percentage will 

start to diminish over time. They also will begin to face a variety of constraints (and opposition) as 

they achieve larger sizes, including infrastructure limitations. 

 

 

The increase in global demand 

over the next 40 years 

represents approximately three 

times the current energy use of 

the United States.   

The task of converting to 

alternatives is a classic case of 

one step forward and two steps 

back.   

Wind, ethanol and biodiesel 

have exhibited the greatest 

growth recently and this will 

continue. 
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Figure 40. Projected Growth in Global Energy Consumption by Source  to 2050  

Base Case:  Moderate Adoption of Alternatives 

Sources: EIA, Earth Policy Institute, AltaCorp Capital Inc. 

Note: Renewables Percentage includes Hydro and all other renewables 

* Non-Electricity Renewables are those used for heat generation 

 

Figure 41 shows a more-aggressive adoption of renewables in our high case where renewables outpace overall 

energy consumption with an increase to 24% of total energy consumption in 2050 from the 11% in 2009. The 

absolute amount of renewable energy increases to 196 quadrillion BTUs in 2050 from 55 quadrillion in 2009, 

which represents a 256% increase. In this case, we assume some modified growth rates versus our base case 

depending on the type of renewable energy: 

 Hydro (2.5%) – With larger financial commitments by governments, the largest component of 

renewable energy could experience stronger growth at 2.5% per annum. 

 Biomass/Waste (2.6% until 2030, then 4.0% until 2050) – We anticipate with continued developed 

in new technologies, and associated cost reductions, the growth in biomass/waste could accelerate 

to 4% by 2030 and continuing through 2050. 

 Non-Electricity Renewables (3.0%) – We anticipate that non-electricity renewables would see 

stronger growth under an aggressive adoption of renewables, keeping in mind that at its current size, 

the relative growth as a year-over-year percentage would be smaller than other renewables. 

 Geothermal (3.0%) – With additional financial support under an aggressive adoption scenario, 

geothermal development could pick up in the shorter term.  We anticipate this growth will be 

limited by the up-front capital and exploration risks associated with drilling and evaluating potential 

geothermal sites prior to their development. 

 Wind (9.0% until 2030, then 5.0% until 2050) – As one of the most economically competitive of 

the renewable alternatives, wind would continue to see strong growth under an aggressive adoption 

scenario, with limits occurring in markets where it achieves higher penetration rates.  In these cases 

wind would be limited to a 20% market share as we don‟t anticipate utility scale electricity storage 

being viable in this time frame. 
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With additional financial 

support, geothermal 

development could pick up in 

the shorter term. 

 

Wind would continue to see 

strong growth. 
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 Solar, Tide and Wave (9.0% until 2030, then 6.0% until 2050) – Solar, tide and wave have the 

greatest potential for large percentage growth over the long term due to their relative size and with 

continued innovation and financial support under the rapid adoption scenario. 

 Ethanol/Biodiesel (9.0% until 2030, then 4.0% until 2050) – In the short/medium term, there is the 

potential for strong growth for biofuels, especially as next generation technologies become more 

cost competitive and can start to produce at commercial volumes.   

Even in this scenario, there is still a significant amount of hydrocarbons required to meet full energy demand.  

A large portion of this demand is simply driven by population growth and driven further by an increase in 

energy use per individual. 

 

Figure 41. Projected Growth in Global Energy Consumption by Source  to 2050  

High Case:  Rapid Adoption of Alternatives 

Sources: EIA, Earth Policy Institute, AltaCorp Capital Inc. 

Note: Renewables Percentage includes Hydro and all other renewables 

* Non-Electricity Renewables are those used for heat generation 
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In the rapid adoption scenario, 

the absolute amount of 

renewable energy increases 

256% in 2050 over 2009. 

Even in this scenario, there are 

still a significant amount of 

hydrocarbons required to meet 

full energy demand. 
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Growth in Alternatives to 2100 – the Long Term 

If we assume that growth in energy consumption continues at 1.2%, the total demand in 2100 will grow by 

over 195% to 1,482 quadrillion BTUs from approximately 502 quadrillion in 2009.  The absolute increase of 

980 quadrillion BTUs over this time period represents over nine times the amount of energy currently 

consumed in the United States.  Little analysis is required to determine that this amount of energy generation is 

not possible using current technologies; few would argue it could be achieved.  Much is required:   

 Drop in consumption?  Without question  

 Increase in alternatives? Absolutely 

 Increase in natural gas production? No doubt  

 More hydroelectricity?  As much as possible 

All sources of energy are required to meet growing demand; no single energy source can represent a “saviour” 

for the ever-increasing demand for energy.  The development of multiple energy sources, including 

unconventional hydrocarbons and renewable energy sources, needs to be undertaken in combination with 

programs to curb the global appetite for energy.   

Moreover, the “elephant in the room” (the obvious issue that is not being acknowledged) is that there is a limit 

to the number of people the Earth can support.  Current global population is rapidly approaching 7 billion 

individuals and could reach 10 billion in the next 40 to 60 years.  Population growth is an unresolvable 

problem, at least a problem that will not be resolved through government or personal intervention.  The only 

resolution will be through naturally-occurring events such as famine, disease or natural disasters.  Having 

shared that rather bleak observation, we resume our analysis. 

Figure 42 shows our base case, with a moderate adoption rate of alternatives where renewables outpace overall 

energy consumption with an increase to 32% of total energy consumption in 2100 from 11% in 2009. The 

absolute amount of renewables increases to 468 quadrillion BTUs in 2100 from 55 quads in 2009, which 

represents a 751% increase in renewable energy.  In this case we assume differing growth rates for the period 

from 2050-2100 depending on the type of renewable energy, acknowledging that predictions over this longer-

term time frame will be increasingly unreliable and depend on a large number of factors which are difficult to 

predict:  

 Hydro (1.0% 2050-2100) – Over time, the number of large water sources that could be developed 

for hydro power will become limited, and growth, although still large on an absolute basis, will fall 

on a year-over-year-percentage. 

 Biomass/Waste, Non-Electricity Renewables (2.6% 2050-2100) – We anticipate that biomass/waste 

and non-electricity renewables could continue to grow at a reasonable rate over the longer-term. 

 Geothermal (3.0% 2050-2100) – Growth over the long-term would continue to be strong, although 

still mitigated by exploratory risks that would constrain the amount of capital allocated towards 

geothermal vs. other alternatives. 

 Wind (3.0% 2050-2100) – With a large global resource base, growth in wind power would continue, 

but diminish on a percentage basis as the relative size of wind power increases and the market 

matures (keeping in mind that the highest quality wind power sites will likely be developed in the 

first half of the century).  

 Solar, Tide and Wave (6.0% 2050-2100) – Towards the latter half of the century, given 

technological advancements and cost reductions, solar, tide and wave power would see some of the 

highest growth rates of all renewables. 

 Ethanol and Biodiesel (3.0% 2050-2100) – Arable land constraints will cut-off the development of 

most first generation biofuels by this time, allowing next generation technologies (e.g. cellulosic, 

algae-based fuels) to take over as the drivers of growth in biofuel production. 

The increase represents over 

nine times the amount of 

energy currently consumed in 

the United States.  

The development of multiple 

energy sources need to be 

undertaken in combination with 

conservation. 

Growth in wind power would 

continue, but diminish on a 

percentage basis as the relative 

size of wind power increases. 

 

 

 

 

Solar, tide and wave power 

would see some of the highest 

growth rates of all renewables. 
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Figure 42. Projected Growth in Global Energy Consumption by Source  to 2100  

Base Case: Moderate Adoption of Alternatives 

Sources: EIA, Earth Policy Institute, AltaCorp Research  & Analysis 

Note: Renewables Percentage includes Hydro and all other renewables 

* Non-Electricity Renewables are those used for heat generation 

 

Figure 43 shows our high case with a more-aggressive adoption rate of renewables where they outpace overall 

energy consumption with an increase to 47% of total energy consumption in 2100 from 11% in 2009. The 

absolute amount of renewable energy increases to 701 quadrillion BTUs in 2050 from 55 quadrillion in 2009, 

which represents an 1,175% increase. In this case we assume some modified growth rates versus our base case 

depending on the type of renewable energy:  

 Hydro (1.0% 2050-2100) – We believe that the limited availability of large-scale hydro will mean 

little or no change in an aggressive adoption scenario. 

 Biomass/Waste, Non-Electricity Renewables (4.0% 2050-2100) – These renewable resources, with 

such a large potential resource base, could experience larger growth rates over the latter half of the 

century given sufficient financial support. 

 Geothermal (3.0% 2050-2100) – We don‟t anticipate significant changes in growth under an 

aggressive adoption scenario, although this could change significantly with the development of 

improved exploration and development techniques. 

 Wind (3.0% 2050-2100) – This is the same the year-over-year percentage for 2050-2100 as the base 

case, but this rapid adoption scenario benefits from the higher adoption rates prior to 2050.  

 Solar, Tide and Wave (6.0% 2050-2100) – As in the base case, we see the potential for large 

growth for solar, tide and wave after 2050.  Similar to our wind predictions, though, the year-over-

year percentage growth is unaltered, but the absolute growth on a year-over-year BTU basis will be 

larger than under our base case predictions.  Note that even though solar, tide and wave has the 

highest adoption rates they still end up being one of the smallest contributors to global energy in 
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2100.  This is partially due to these technologies starting at a current base of only 0.04%, so even 

rapid adoption will have limited compounding results over the century. 

 Ethanol and Biodiesel (4.0% 2050-2100) – With additional financial support, improved 

development techniques and a broader acceptance of biofuels, the next generation of biofuels would 

drive even higher growth rates, beginning to displace more significant amounts of crude-based 

fuels.  In the year 2100, under the high adoption scenario, this would equate to 220 quads of energy 

or 104 million barrels of oil equivalent per day.  

Note on this chart the drop in coal and oil (petroleum) demand later in the century, which is what we, as a 

global society, want to see so that GHG emissions can be reduced.  Also note the ever-growing component of 

natural gas, which is also good for the world because of its less carbon-intensive nature when compared to oil 

or coal. 

 

Figure 43. Projected Growth in Global Energy Consumption by Source  to 2100  

High Case:  Rapid Adoption of Alternatives 

Sources: EIA, AltaCorp Capital Inc. 

Note: Renewables Percentage includes Hydro and all other renewables  

* Non-Electricity Renewables are those used for heat generation. 

 

Reducing Greenhouse Gas Emissions – Can we do it? 

 

No. 

That answer may seem flippant, defeatist and/or dismissive, but our long term analysis does not bode well for 

mankind‟s ability to reduce GHG emissions.  To meet the growing demand for energy on the planet, we will 

not only need alternatives, but we will also require an ever-increasing amount of hydrocarbon-based, and CO2-

emitting, energy.  Anyone who believes we will meet our global climate change targets would require 

fundamentally different (and, in our view, unrealistic) assumptions than what we have used here.  We believe 

GHG targets currently being discussed are both unrealistic and unachievable.  We are not saying that 
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The next generation of biofuels 

would drive even higher growth 

rates. 

 

 

 

Ethanol and biodiesel would 

equate to 104 million barrels of 

oil equivalent per day in 2100. 

Note the significant drop in coal 

use and the dramatic increase 

in natural gas consumption. 

Our long term analysis does not 

bode well for mankind’s ability 

to reduce GHG emissions. 

The absolute amount of 

renewable energy increases by 

1,175% in 2100 over 2009. 
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developed economies shouldn‟t reduce their energy and hydrocarbon consumption – we must – but that will 

not resolve the greater issue of a growing global population and increasing per capita energy use. 

As the most significant energy consumer in the developed world, the United States‟ per capita energy 

consumption has been relatively stable since the 1980s, as shown in the chart below.  However, overall 

consumption from the country has increased with growing population.  Figure 44 also shows the per capita 

energy consumption in China has increased by 3.6 times since 1980 and the growth in population has added 

345 million people during the same time period for a total increase in demand of 67 quadrillion BTUs over the 

time period, or 67% the current amount of energy consumed in the United States.  In 2010, the IEA reported 

that China had surpassed the U.S. as the largest global consumer of energy. 

The expected increase in demand from China and other developing countries is significant.  Note that there are 

an estimated 1.5 billion people in the world without electricity and about 2.5 billion people without modern 

cooking or heating fuels.  These individuals want and/or expect to improve their standards of living; meeting 

these expectations is inextricably linked to increasing global energy consumption. 

 

Figure 44. U.S. vs. China Energy Consumption  

Sources: EIA, AltaCorp Capital Inc. 
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The Critical Role of Oil & Gas in a Long-Term Energy 

Strategy 

We believe that companies leveraged to oil and natural gas continue to offer an attractive long-term 

investment opportunity.  This is particularly the case for companies with long-life reserves and resources such 

as the oil sands of Canada and non-conventional natural gas.  Also, service and infrastructure companies will 

benefit from this ongoing demand for hydrocarbons.  Our comparison of hydrocarbons to several alternatives 

reveals that the oil sands, conventional oil and natural gas will continue to be developed long into the future 

and play a critical role in a North American sustainable energy strategy.  Renewable energy – harnessing the 

power of energy sources like the wind and sun – also play an essential role and will become more important as 

hydrocarbons become more expensive to extract.  On many practical and economic measures, however, 

hydrocarbons are the still the best source of energy we have access to at this time.   

The diverse nature of the different energy sources also means that from an integrated system perspective it is 

essential to have a good mix – or portfolio – of energy sources.  Each alternative energy source has some 

inherent limitations, which will place restrictions on their implementation, and hydrocarbons – especially 

natural gas – will continue to be central in meeting our energy demands. 

  

Renewable energy will become 

more important as 

hydrocarbons become more 

expensive to extract.   

 

 

 

 

Hydrocarbons – especially 

natural gas – will continue to be 

central in meeting global energy 

demand. 
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Suggestions / Recommendations 

Most economic activity on our planet is driven by the expenditure of energy.  Energy is an essential part of all 

humans‟ daily lives, even to those who currently don‟t have access to electricity or hydrocarbons.  Through 

researching this report we have seen several areas where improvements or changes could be made in the public 

debate about energy and the move towards renewables.  Hopefully these suggestions and recommendations 

might assist in allowing a more realistic assessment of the global energy circumstance. 

Consistency – We Suggest Energy Equivalency 

We believe that the debate around energy can be done in a common language; that is, comparing energy 

sources on an equal – or the “apples to apples” – basis.  A consistent methodology is required to properly 

compare and contrast the various sources of energy.  On a global scale, comparing all forms of energy is a 

huge and complex undertaking, however, using an energy-equivalent measure, like the BTU, makes the task 

manageable and realistic.  An energy equivalency measure will allow consumers, researchers and governments 

to make informed decisions when evaluating energy projects and energy use.   

Refocusing the Energy Debate 

Society needs to use our knowledge about the relative strengths and weaknesses of different energy sources to 

identify the appropriate locations, funding structures (government, industry or private investment) and 

incentives to develop each energy resource in the most efficient manner.  Some examples of this refocused 

thinking might include: 

 Funding Partnerships – Technologies that can be developed with returns attractive to industry and 

private investment, based on a corporate cost of capital, should be funded predominantly by those 

groups.  This would allow more capital-intensive projects that can provide value at a social cost of 

capital, which would be funded by governments.  To achieve this allocation of funding, formal 

partnerships between government, industry and private investment firms are required. 

 Cost Effective Resource Development – We believe that every type of energy resource has the 

potential to be developed in a cost effective manner, but not everywhere in the world.  The quality 

of an energy resource can vary dramatically by country and within different regions in a country.  

For example, it is clear that in Brazil the development of sugarcane-based ethanol is an efficient and 

cost effective means to develop liquid fuels.  This may not hold true for this feedstock (or others, 

such as corn) in other areas of the world.  

 Diversity and Distributed Energy Generation – There is value to society in having a diverse set of 

energy sources, distributed geographically.  The different characteristics of each energy source 

allow for the creation of reliable and adaptable energy systems when they are used in combinations 

that can consist of complementary energy sources such as wind and solar, or renewable and 

conventional. 

 Cooperative Development of Resources and Environmental Technologies – Companies should be 

encouraged to cooperate through joint ventures to develop resources and environmental protection 

technologies including: 

 Water Recycling – Conventional hydrocarbon fuel and biofuel companies face challenges 

with respect to fresh water usage, so the development of a new generation of water 

recycling technologies would be a benefit to both. 

 Carbon Capture and Storage – We believe that there is long-term potential for captured 

carbon to be viewed as an asset/revenue instead of an expense/liability with the continued 

development of carbon trading markets, enhanced oil recovery techniques and algae-

based biofuels.  Perhaps all energy producers (including biofuel companies) could jointly 

explore techniques for capturing and storing carbon as well as marketing the solutions. 

Improvements or changes 

could be made in the public 

debate about energy. 

Using an energy-equivalent 

measure, like the BTU, makes 

the task manageable and 

realistic. 

There is value to society in 

having a diverse set of energy 

sources, distributed 

geographically. 

The development of a new 

generation of water recycling 

technologies would be a benefit 

to both hydrocarbon and 

biofuel companies. 
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Subsidies – Productive Over the Long Term 

Our review of existing subsidy structures leads us to the following recommendations about how subsidy 

programs should be structured to be productive over the long term: 

 Innovation Based Incentives – Tax incentives or rebates that are awarded generically based on 

energy source lack the impetus for companies to innovate.  As an example, subsidies for solar PV 

technology are often granted to practically every manufacturer, regardless of their economic 

efficiency.  Subsidies often do not reward innovation because they tend to be higher for higher cost 

energy solutions (i.e. effectively rewarding them for being high cost).  This was the case for oil 

sands developers where higher capital costs resulted in more royalty reductions. Over time as costs 

get reduced, the subsidies disappear (i.e. effectively penalizing them for now being lower cost).  

Subsidies should be given based on cost reductions; for example, the faster you reduce costs the 

more subsidies / tax credits you receive.  Eventually, yes, all subsidies should disappear but the 

reward / behaviour mechanism needs to be considered.   

 Funding for Research and Development – More funding for R&D directed at producing lower cost 

energy sources using conventional alternatives is required (e.g. advances in technology for electrical 

generation would mean more kWh produced by burning the same tonne of coal or cubic foot of gas 

and also reduce GHG per BTU.) 

 Subsidies to Create Wider Use of Natural Gas – These subsidies could encourage the development 

of new uses for natural gas including GTL, CNG and LNG. 

 Subsidies and Taxes to Reduce Consumption – This may be one of the cheaper forms of 

“alternative energy” which could reduce consumption and provide an income stream. 

 Subsidy Balance – Subsidy programs need to balance energy consumption, in the form of end-use 

efficiency improvements, and energy production, in the form of energy production improvements.  

 Energy Generic Subsidies – These subsidies would move towards being based on specific 

environmental objectives for all fuel types; incentives need to be designed to reward innovation, as 

well as cost and pollution reductions, regardless of energy type. 

 Subsidy Reduction Over Time – Subsidy programs need to include mandated reductions over time 

to ensure that only business models with the potential of long-term profitability would be 

encouraged to seek subsidies in the first place.  This would be similar to hydrocarbon-based 

subsidies like the oil sands where there is a lower royalty rate initially, but then increase after the 

operators have recovered their invested capital. 

 Subsidy Aggregation – Subsidy programs need to be evaluated on an aggregate basis and not 

implemented in isolation.  For example, corn-based ethanol subsidies can be significant when 

viewed on an aggregate basis.  Let‟s examine a barrel of ethanol produced by a small ethanol 

producer: 

 Farmers: $0.28 cents/bushel of Corn (2002 Farm Act – Direct Payment)  

 Small Ethanol Producer: $0.10/gallon (Small Producer Tax Credit) 

 Refinery / Ethanol Blender: $0.45/gallon (VEETC) 

 When these individual subsidies are aggregated, the total ethanol subsidy equates to 

roughly $28/barrel of ethanol (or $46/boe-energy) 

 

 

 

   

Subsidies should be given 

based on cost reductions. 

Subsidy programs need to 

include mandated reductions, 

evaluated on an aggregate 

basis and not implemented in 

isolation. 
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Groups or Individuals Involved in the Energy Debate 

There are many groups involved in the energy debate and we have some thoughts / suggestions / 

recommendations to these groups. 

Renewable and Hydrocarbon Energy Producers 

There is a clear divide between developers of alternative energy and those involved in conventional 

hydrocarbon energy production.  We believe that increased collaboration between these companies has 

benefits for all, such as: 

 Sources of Capital and Growth – Companies in the utility and energy sectors are well capitalized 

and could serve as reliable sources of funding for alternative energy companies through partnerships 

and other joint ventures.  This funding could be more reliable than government grants, rebates and 

tax credits, but would likely be driven more by economic feasibility.  If shown to be economically 

viable, the technology and potential resources represented by alternative energy companies could 

serve as a growth platform for conventional utility and energy companies. 

 Co-Location and Cost Sharing – Companies in the alternative and conventional energy sectors 

have the opportunity to share costs by leveraging shared infrastructure and through joint lobbying 

efforts to governments. 

 Improved Resource Evaluations and Legislation – Partnerships between conventional and 

alternative energy components could promote the sharing of resource evaluation techniques.  This 

cooperation would be valuable because legislation associated with the evaluation and publication of 

reserve and resource data, currently the domain of conventional energy projects, needs to be 

expanded to include renewable energy sources. 

Environmentalists 

 Environmentalists should follow David Suzuki‟s lead by being willing to work with industry; as he 

said to Jim Prentice during a discussion filmed on Haida Gwaii and aired on CBC television in 

2010: 

“..it is very easy to be self-righteous when you‟re fighting: „we‟re  right and they‟re 

wrong, they‟re bastards and you know‟ and it‟s a big shift for a lot of environmental 

groups and people – including me – to say look, we‟ve got to engage in dialogue. We‟re 

not going to make it by ourselves.  It‟s a very difficult thing when you‟ve grown up 

fighting, to suddenly say „We‟ve got to reach across‟ ”. 

We respect Suzuki‟s willingness to engage with industry and suggest all environmentalists to take 

this honourable stance, which will allow everyone to get down to work on improving our complex 

and challenging environmental circumstance. 

 Some environmentalists forecast how the global society can become completely free of 

hydrocarbons and nuclear energy in just a few decades.  Although this would be an excellent 

outcome for mankind, we view these forecasts as not being based in reality; they ignore the 

practical and economic realities about alternative energy.  Conversely, if anyone believes our 

assumptions to be unrealistic, we fully encourage input and feedback on our analysis. 

 

Energy Producers 

 Cooperation between environmental groups and industry, in our view, must be done.  We suggest 

that the lead is taken in this effort by environmental groups, because they would be viewed as non-

conflicted.  This also gives environmentalists, the opportunity to make significant impacts on the 

industry from the “trenches”. 

Partnerships could promote the 

sharing of resource evaluation 

techniques. 

We respect Suzuki’s willingness 

to engage with industry. 
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 Fund alternative energy investments and companies, those that have the potential of becoming 

economically sustainable or those that have a technology that could be integrated with conventional 

energy operations. 

 Donate to reputable environmental causes; especially those who are willing to enter into dialogue 

with industry. 

 Work with government, industry groups and environmentalists to come up with a Canadian Energy 

Strategy. 

Media 

 Reduce or eliminate misleading articles that use terms such as: 

 “this leads us to energy independence” 

 “we have the technology now to eliminate our use of hydrocarbons” 

 When discussing the benefits of a technology, also address economics and negatives.  For instance, 

cellulosic ethanol can sound like a great solution to replace or offset hydrocarbon use, until the 

economics are discussed. 

 Publish balanced articles that take into account all aspects of various forms of energy. 

Individuals 

 Reduce personal energy consumption. 

 When you buy products that are marketed or considered as “green”, make sure you understand the 

full life cycle environmental considerations.  For instance, if you are buying an electric car ask 

“where is the electricity coming from?”  If the answer is coal, then your electric car is likely making 

the CO2 emissions problem worse, not better.   

 Donate to reputable environmental causes; especially those who are willing enter into dialogue with 

industry.  

Governments 

 When setting subsidies, be clear on the potential long-term viability of the renewable technologies 

being developed. 

 Governments have the capacity to fund broader studies to understand full life cycle economics of 

various sources of energy sources.  A comprehensive and ongoing study would provide the proper 

basis for making value-added policy decisions. 
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Conclusion 

Non-renewable energy resources – hydrocarbons – are the most economic and practical forms of energy 

available to mankind.  Is this sustainable and the most environmentally-friendly solution?  No.  Do we need to 

move towards renewable energy sources?  Most definitely.  We need to move away from consuming 

hydrocarbons, but there are many realities about renewables that are often ignored.  These realities need to be 

addressed so that the transition to renewables can be done as easily as possible.  We believe that the transition 

to renewables will take much longer and cost significantly more than might be realized. 

One of the main reasons replacing hydrocarbons with alternatives will be difficult is because our demand for 

energy is growing so dramatically.  In addition to the continued growth in population, there is an increase in 

energy demand that goes along with one‟s desire to increase his/her quality of life. The task of converting to 

alternatives is a classic case of one step forward and two steps back. It will be very difficult to meet increased 

energy demand while at the same time trying to convert to alternatives.  In our base case adoption of 

alternatives, we view that by 2050 we see renewable alternatives increasing to 20%, and even with our high 

case we only see renewables usage increasing to 24% of total energy consumption.   

It is going to take open discussions with the public, government and industry to move away from the cost 

effectiveness of non-renewable energy sources, establish the best method of defining / managing alternatives 

as well as the positive / negative outputs.  An economic reality of energy is that as usage continues to increase, 

the most cost efficient form is preferable.  Another economic reality is that it is expensive to develop 

sustainable, consistent energy sources on a scale large enough for the masses.  The practical realities of energy 

include the realistic full cycle effects on the environment and society as a whole. 

Renewable energy sources are required to create a sustainable energy infrastructure, and we do need to phase 

out hydrocarbons because of their non-renewable nature. Renewable sources of energy need research and 

development to help increase their efficiency, and to reduce their environmental footprint.  To increase the 

validity and effectiveness of renewable energy resources, government, industry and individuals are going to 

have to step up to fund the high cost of these projects.   
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Glossary of Terms 

Term Description 

Alternatives 

In this report we will use the terms alternatives and renewables 

interchangeably to describe hydro, wind, solar, biofuels, geothermal, 

biomass, tide and wave energy.  Note that we do not categorize nuclear as a 

renewable or alternative, however, it will play an important role in meeting 

future energy demand. 

Arable land Land available for cultivation. 

Biodiesel 
A vegetable oil or animal fat-based diesel fuel usually obtained by reacting 

the oils/fat with alcohol. 

Biofuel 
Fuels which are produced from biomass materials; includes bioethanol and 

biodiesel. 

BOE-energy 

Barrel of oil equivalent energy – a measure of energy equivalent to that 

contained in 1 barrel of light/medium crude oil, which is approximately 5.8 

million BTU. 

BTU 
British Thermal Unit – a measure of the amount of heat energy required to 

raise the temperature of one pound of water by one degree Fahrenheit. 

Capacity Factor 

Capacity Factor – a ratio comparing the average energy produced over a 

period of time to the energy that could have been produced at continuous full 

power operation during the same period 

CCS 
Carbon Capture and Storage – a series of approaches to capturing carbon 

dioxide and storing it to prevent it from entering the atmosphere. 

Cellulosic 
An ethanol biofuel that is produced from wood, grasses, or the non-edible 

parts of plants. 

CH4 

Methane – a combustible hydrocarbon, but also a GHG if released into the 

atmosphere with approximately 25 times the global warming potential of 

Carbon Dioxide. 

CO2 Carbon Dioxide 

Combined Cycle 

CC – a combination of engines that convert heat or thermal energy into 

mechanical energy.  The purpose of combining engines is to improve overall 

energy efficiency by taking waste heat from one engine as an input to other 

engines. 

Compressed Natural Gas 

CNG – is a natural gas under pressure, which serves as a substitute for 

gasoline or diesel fuels. CNG is considered to be an environmentally 'clean' 

alternative. 

Corporate Cost of Capital 

This is the 10% rate of return we used that might be expected by private or 

corporate investors.  This number will range due to the required rate of return 

for various companies, but 10% is reasonable in the current environment. 

Discount Rate 
An interest rate for calculating present values in discounted cash flow 

analysis. 

EIA 

United States Energy Information Administration – a statistical agency of the 

U.S. Department of Energy (DOE). It provides policy-independent data, 

forecasts, and analyses. 

Ethanol 
An alcohol obtained from the fermentation of sugars and starches or by 

chemical synthesis (a.k.a. ethyl alcohol) 

FFV Flex Fuel Vehicle 

Feedstock 
The starting (raw) materials (e.g. grains, oils, etc.) used to create biofuels / 

manufacture a product 

Fission The process of splitting a large atom into two or more smaller ones. 

FAO Food and Agriculture Organization of the United Nations 
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Full Life Cycle GHG 
Taking into account the emissions related to extraction, transport, refining 

and final combustion by the end-user.  

Gas to Liquids GTL – is the process of converting natural gas to gasoline or diesel. 

GHG 

Greenhouse Gases – three of the most often discussed greenhouse gases in 

energy research are: Carbon Dioxide (CO2), Methane (CH4) and Nitrous 

Oxide (N2O) 

GW Gigawatt 

GWh Gigawatt hour 

Hydrocarbons 

A class organic compounds that contain both hydrogen and carbon.  Within 

the context of this report hydrocarbons generally refers to a subset of those 

compounds used as an energy source (Oil, Natural Gas and Coal). 

IEA International Energy Agency 

IGCC 

Integrated Gasification Combined Cycle – a power generation technology 

which allows for reduced emissions and improved fuel efficiency of coal 

plants.  Sometimes referred to as a “clean coal technology”. 

IEA International Energy Agency 

Maize 
Used in scientific, agricultural and formal usage; known as more broadly as 

corn. 

mcf A measure equivalent to one thousand cubic feet. 

mmBTU One Million British Thermal Units 

MW Megawatt  

MWh Megawatt hour 

N2O 
Nitrous Oxide - A GHG with approximately 300 times the global warming 

potential of Carbon Dioxide. 

NOx Oxides of nitrogen 

Non-renewables Synonymous with Hydrocarbons 

NREL 

National Renewable Energy Laboratory.  This is a U.S. federal laboratory 

dedicated to renewable energy and energy efficiency research and 

development. 

NPV 
Net Present Value – the sum of the present value of a series of individual 

cash flows. 

OPEC Organization of the Petroleum Exporting Countries 

Pulverized Coal A fine powdered form of coal (a.k.a. powdered coal) 

PV 
Photovoltaic – A process of generating power by converting solar energy into 

electricity using semiconductors. 

Quadrillion 
One thousand million million or 10^15.  A quadrillion BTU is approximately 

equivalent to the energy in 170 million barrels of oil. 

Renewables 

In this report we will use the terms alternatives and renewables 

interchangeably to describe hydro, wind, solar, biofuels, geothermal, 

biomass, tide and wave energy.  Note that we do not categorize nuclear as a 

renewable or alternative, however, it will play a role in meeting future energy 

demand. 

SAGD 

Steam Assisted Gravity Drainage – a process to produce bitumen without 

mining.  The upper of two horizontal wells injects steam into the producing 

zone, creating a high-temperature steam chamber in the formation. The heat 

melts the thick bitumen which allows gravity to assist it to flow freely to the 

second horizontal well below.  

 



The Energy Reality 

The Energy Reality APRIL 2011 pg 80 

Silicon 
A non-metal with semiconducting properties, used in the production of solar 

cells and solar photovoltaic 

SO2 Sulphur Dioxide 

Social Cost of Capital 

This is the rate of return that would be used by governments and economists 

to determine the value of investing in social projects like energy. In this 

report we use a 3.5% rate. 

Solar PV 
Solar Photovoltaic – converting solar radiation into electricity using 

semiconductors 

U-235 
Uranium-235 – an isotope of uranium that can sustain a fission chain 

reaction. 

Unobtainium 

From Wikipedia: Since the late 1950s, aerospace engineers have used the 

term “unobtainium” when referring to unusual or costly materials, or when 

theoretically considering a material perfect for their needs in all respects, 

except that it does not exist.  

USDA 

United States Department of Agriculture – an agency of the U.S. government 

responsible for developing and executing policy on farming, agriculture, and 

food. 

VEETC The U.S Volumetric Ethanol Excise Tax Credit (U.S.) 

WTW 
Well to Wheels.  A life cycle assessment technique for oil and natural gas 

energy. 

Yield 
In this report yield refers to „crop yield‟ which a measure of the agricultural 

production or output per unit area of land 
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