

Getting From Here to There Moving to a Hydrogen Economy

Domenico Grasso Provost & Professor of Engineering

Yushan Yan¹ and Ajay Prasad²

¹Professor of Chemical Engineering ²Professor of Mechanical Engineering

University of Delaware April 21, 2016

CO₂ Emissions

Released (10 ⁹ ton/year)		Removed (10 ⁹ ton/year)		
Combustion (HCs)	6.0	Bio-uptake (plants)	1.2	
Deforestation	1.2	Uptake by oceans	2.5	
Sum:	7.2	Sum:	3.7	

Accumulation: 3.5 x 10⁹ ton/year

Austria Germany Japan Netherlands United States

Selected Key Findings:

•Between ½ and ¾ industrial inputs are returned to the environment as waste within <u>1 year!</u>

•Total annual *per person* material outputs to the environment:

Japan United States

21 metric tons 86 metric tons

Pros and Cons of Fuel Cells

	1. Higher efficiency compared to IC engines		
Advantages of Fuel Cells	2. Zero emissions at the point-of-use		
	3. No moving parts in the stack, so quieter		
Challenges Facing Fuel Cells	1. Cost (materials, labor, economy of scale)		
	2. Durability (membrane, catalyst)		
	3. Lack of H2 Infrastructure: H2 is difficult to		
	produce, transport, and store		

Fuel cell patents granted

Rank	2010 Application	s
1	Toyota	381
2	Panasonic	141
3	UTC ^a	118
4	Honda	103
5	General Motors	103
6	Samsung	79
7	Daimler	75
8	Toshiba	61
9	Nissan	52
10	Sony	52

The 2011 Fuel Cell Patent Review, Fuel Cell Today

Current fuel cell car prototypes

Vehicle	Year Shown	Fuel Cell Size/Type	Range (km)	Fuel Type
Audi Q5 HFC	2010	98 kW PEM	N/A	CH ₂ (700 bar)
Daimler EcoVoyager	2008	45 kW PEM	483	CH ₂ (700 bar)
Daimler Mercedes-Benz B-Class F-Cell	2009	100 kW PEM	385	CH ₂ (700 bar)
Fiat Panda	2007	60 kW PEM	200	CH ₂
GM Provoq	2008	88 kW PEM	483	CH ₂ (700 bar)
GM HydroGen4/Equinox	2007	93 kW PEM	320	CH ₂ (700 bar)
Honda FC Clarity	2007	100 kW PEM	386	CH ₂ (350 bar)
Hyundai Tucson ix	2011	100 kW PEM	650	CH ₂ (700 bar)
Intelligent Energy Black Cab	2011	30 kW PEM	400	CH ₂ (350 bar)
Kia Borrego/Mojave	2008	115 kW PEM	685	CH ₂ (700 bar)
Kia Sportage II	2008	100 kW PEM	328	CH ₂ (350 bar)
Morgan LIFEcar	2008	22 kW PEM	402	N/A
Nissan X-Trail FCEV	2008	130 kW PEM	N/A	CH ₂ (700 bar)
Suzuki SX4-FCV	2008	80 kW PEM	250	CH ₂
Toyota FCV-R	2011	N/A	700	CH ₂ (700 bar)
Toyota FCHV-adv	2008	90 kW PEM	830	CH ₂ (700 bar)
VW Passat Lingyu	2008	55 kW PEM	300	N/A
VW Tiguan HyMotion	2008	80 kW HTFC	200	CH ₂ (700 bar)

Only vehicles introduced since 2007 are included.

http://www.fuelcells.org/info/charts/carchart.pdf

University of Delaware Centers and Institutes

UD Energy Institute

Institute for Energy Conversion

– Solar power

Center for Carbon-free Power Integration

- Wind power
- Vehicle-to-grid

Center for Fuel Cell Research

- Fuel cells
- Solar hydrogen
- Lithium-ion batteries

Center for Catalytic Science & Technology

- Catalysts for fuel cells, electrolyzers, and flow batteries

April 9, 2007

November 16, 2009

Bus #	Size	Stack	Batteries	Operation
1	22-ft	20 kW	Ni-Cad	2007
2	22-ft	40 kW	Ni-Cad	2009
3	40-ft	60 kW	Li-Ti	2016

Center for Fuel Cell Research

Active research in:

- Polymer Electrolyte Membrane fuel cells (PEM) – automotive
- Direct Methanol Fuel Cells (DMFC) portable electronics
- Solid Oxide Fuel Cells (SOFC) stationary power
- Hydroxide Exchange Membrane (HEM) Fuel Cells

Center for Fuel Cell Research

Computing Revolution

Yesterday – Centralized

Large mainframe computers

Today – Distributed Networked personal computers

Energy Revolution

Today – Centralized

Large combustion power plants

Tomorrow – Distributed Networked electrochemical devices

Toyota Mirai – \$57,000

Proton Exchange Membrane Fuel Cell (PEMFC)

<u>Hydroxide Exchange Membrane Fuel Cell</u> (HEMFC)

Sonijector LLC

<u>Customers</u>: Toyota, Nissan, Volkswagen, Intelligent Energy, Tata Motors

The best way to predict the future is to create it...

