U.S. Department of Energy Fuel Cell Technologies Office

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Hydrogen and Fuel Cells Overview

Washington, DC

April 21, 2016

Dr. Sunita Satyapal

Director Fuel Cell Technologies Office U.S. Department of Energy

Real Climate Change Impact Requires

Deep Decarbonization

U.S. DEPARTMENT OF ENERGY Renewable Energy Fuel Cell Technologies Office | 3

"Let that be the common purpose here in Paris. A world that is worthy of our children. A world that is marked not by conflict, but **by cooperation**; and not by human suffering, but by human progress. A world that's safer, and more prosperous, and more secure, and more free than the one that we inherited. **Let's get to work**."

- President Barack Obama at the launch of COP21

COP21.CMP11

Oil Dependency is Dominated by Vehicles

- Transportation is responsible for
 66% of U.S. petroleum usage
- **27%** of GHG emissions
- On-Road vehicles responsible for 85% of transportation petroleum usage

- 16.0M LDVs sold in 2014.
- **240 million light-duty vehicles** on the road in the U.S
- **10-15 years** for annual sales penetration
- **10-15 years** to turn over fleet

Poses significant economic, energy and environmental risks to U.S.

Photos courtesy of Spc. Jordan Huettl, U.S. Army; U.S. Environmental Protection Agency; and M. Studinger, NASA

It takes decades of sustained effort to turn over the fleet

All-of-the-Above Energy Strategy

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 5

"We've got to invest in a serious, sustained, all-of-the-above energy strategy that develops every resource available for the 21st century."

- President Barack Obama

<image>

Secretary Moniz at DC Auto Show

"As part of an all-of-the-above energy approach, fuel cell technologies are paving the way to competitiveness in the global clean energy market and to new jobs and business creation across the country."

> - Secretary Moniz, U.S. Department of Energy

Hydrogen Iwatani

Copyright (C) 2016 Iwatani Corporation. All Rights Reserved.

Photo Credit: Office of Prime Minister of Japan and His Cabinet

Iwatani Hydrogen Fueling Station Opening with Japan's Prime Minister (Apr, 2015) 1st station in the heart of Tokyo

Fuel Cells Market Overview

Fuel Cell Systems Shipped Worldwide by Application

Source: Navigant Research (2008-2013) & E4tech (2014)

- Consistent ~30% annual growth since 2010
- Global Market Potential in 10- 20 years*
 \$14B - \$31B/yr for stationary power \$11B /yr for portable power \$18B - \$97B/yr for transportation

* *Fuel Cell Economic Development Plan*, Connecticut Center for Advanced Technology, Inc. January 2008

Fuel Cell Electric Vehicles (FCEVs) are here

Honda Clarity Fuel Cell Vehicle

DOE Activities Span from R&D to Deployment

ENERGY Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 8

Partners

Material SRNL SCRA Stational Laboratory FCA

~ 45 Partners in 2015

HONDA

• ITM POWER KOBELCO

CINREL NUVERA Pacific Northwest

ENERGY

AIR LIQUIDE

H₂USA

Fuel Cell & AGA

Hydrogen

PROTON

NACS

<u>Mission</u>

To address hurdles to establishing hydrogen fueling infrastructure, enabling the large scale adoption of fuel cell electric vehicles

Structure

4 Working Groups coordinated by the Operations Steering Committee

More than 45 partners- Visit www.H2USA.org

Example: California- H₂ Station Status

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 10

Snapshot of Status

Locations

Open Retail Stations

* Currently Torrance (H70 only), Santa Monica, San Juan Capistrano, and OCSD are offline (01/15/16 CaFCP SOSS)

Global Infrastructure Activities

International partnerships established to accelerate hydrogen infrastructure

Examples: US-Japan Collaboration on H₂ and Fuel Cells

Technology and Safety Data Sharing

H₂Tools: One-stop for H₂ safety knowledge

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 13

 Includes resources on safety best practices, first responder training, and H₂ codes & standards

- Tracked downloads from Europe and Japan
- Resource translated in Japanese
- 50% of visits are international!

Enabling dissemination of safety information around the world

Japan- US Collaboration in Action!

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 14

> 20th Steering Committee Meeting City of Fukuoka, Japan (*left*)

2015 US DOE Annual Merit Review (AMR) Washington D.C., USA (lower left)

2015 FC Expo Tokyo, Japan (lower right)

International Partnership

International Partnership for Hydrogen and Fuel Cells in the Economy

IPHE is an Inter-Governmental Partnership to

- Share policy information on H₂ and fuel cells
- Increase international collaboration
- Share information and lessons learned

Recent and Upcoming IPHE Events

- 24th IPHE Steering Committee Dec 2015, in Grenoble France
- **New:** May 20th- IPHE Stakeholder-Govt Dialogue, California

18 members working together to advance hydrogen and fuel cell technologies

Visit www.iphe.net for more information

H₂ at Scale Energy System

Source: NREL

H₂ @ Scale Potential:

Reduction by Sector

75% Grid

25% Transportation

> 25% Industrial

A CLEANER FUTURE 50% fewer GHG emissions than today by 2050

& MORE Jobs Security Resiliency The hardest problems of pure and applied science can only be solved by the open collaboration of the world-wide scientific community

> Kenneth G. Wilson Nobel Prize, 1982 in Physics

Thank You

Dr. Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov

ENERGY Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 20

Watch Secretary Moniz driving the Mirai! http://energy.gov/eere/fuelcells/test-driving-toyota-mirai

FCEVs Reduce Greenhouse Gas Emissions

U.S. DEPARTMENT OF ENERGY Renewable Energy Fuel Cell Technologies Office | 21

Source: http://hydrogen.energy.gov/pdfs/13005 well to wheels ghg oil ldvs.pdf

Substantial GHG reductions with H₂ produced from renewables

"It is the long history of humankind (and animal kind, too) those who learned to collaborate and improvise most effectively have prevailed"

- Charles Darwin

Outreach and Communication Efforts

U.S. DEPARTMENT OFEnergy Efficiency &ENERGYRenewable EnergyFuel Cell Technologies Office | 23

Publications- ~100/yr

- Monthly Newsletter
- Success Stories
- News Alerts, Blogs

• Educated:

- >12,000 teachers
- >35,000 code officials & first responders
- Investor Days
- Congressional Caucus Events
- Annual Merit Review
 June 2015- >1,800 attendees

• Ride & Drives

U.S Department of Energy Secretary Ernest Moniz test driving the Toyota Mirai

• Events

2015: 1st year the U.S. to celebrate Hydrogen and Fuel Cells Day

Increasing public awareness and understanding about fuel cells and H₂

ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 24

"Let that be the common purpose here in Paris. A world that is worthy of our children. A world that is marked not by conflict, but **by cooperation**; and not by human suffering, but by human progress. A world that's safer, and more prosperous, and more secure, and more free than the one that we inherited. **Let's get to work**."

- President Barack Obama at the launch of COP21

COP21.CMP11

H₂ at Scale as Key Part of Solution

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 25

H₂ at Scale as Key Part of Solution

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 26

Lab Consortia Approach

Strategy and Structure Activities **Consortia Core** Multi-Lab team with Lab Call to competitively select core team Fuel Cells: FC-PAD (Fuel Cell Performance and Durability) Storage: HyMARC (Hydrogen Storage Lab Call Materials Advanced Research Consortium) ElectroCat (launched) **Core Consortium Team Renewable H2 Production (planned)** (Consortium Lead, Deputy Lead, & Technical Partners: National Labs) **Projects added through FOAs** Companies, universities, labs 2-4 yrs/project 7 FOA May include seedling projects * Subject to appropriations University National **Potential Future Collaborations** & Industry Lab Non-Profit Relevant Offices and other Agencies (e.g. Office of Science, Advanced Manufacturing Office, etc.)

International Partnership for Hydrogen and Fuel Cells in the Economy 23rd Steering Committee Meeting

IPHE 24th Steering Committee Meeting- Grenoble, France

- R&D and accelerate Tech to Market (Lab impact)
 - Key Focus: Renewable H₂
 - Consortia, high throughput materials, safety, fuel cells, H₂
- Strategic, selective demonstrations
- Key analyses to guide RD&D and path forward
 - Life cycle cost; infrastructure, economic & environmental analyses, sustainable pathways, etc.
- Leverage activities to maximize impact
 - U.S. and global partnerships, H₂USA, States

Save the date: Annual Merit Review (AMR) June 6-10, 2016- Washington DC

Hydrogen Fueling Infrastructure Research Station Technology

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 30

Leveraging Expertise of National Labs

In support of

Outstanding Partnership Award

By the Federal Laboratory Consortium (FLC) for efforts toward deployment of hydrogen fueling infrastructure

Reference Station Design

Report Delivered with Detailed
 Station Designs and Cost Estimates

Fuel Contaminant Detection

Market Survey and Gap Analysis
 Complete

HyStEP (H₂ Station Equipment Performance Device)

- ✓ Design Complete
- ✓ Testing Complete

DOE's H₂FIRST project supports H2USA goals to address infrastructure

FCEVs are on U.S. Roads Now!

Available for Commercial Sale

- \$57,500 MSRP
- 67 mi/gge
- 312 mi range, ~5 min refuel
- 114 kW stack
- US:200 2015, 3000 by 2017

Available for Lease

- \$499/month lease
- 50 mi/gge
- 265 mi range
- 100 kW stack
- US: 70 thru May '15 (237 overall)

Just Announced at Auto Shows

- \$60,000 MSRP
- \$500/month lease for initial launch
- +300 mi range*
- 100 kW stack
- Initial launch planned for late 2016

*Preliminary range estimate determined by Honda

Additional OEMs planning FCEVs in soon

H₂ at Scale- Lab Big Idea Initiative

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 32

3 H₂ Focus Areas:

- Advanced Generation
- Storage and Distribution
- End use market transformation and **systems integration**

Outcomes:

- Increased market penetration
- Lower cost H₂
- **Decarbonized** industrial sector
- Expanded use of other sources of energy
- Energy security
- Energy flexibility and resilience

Partners

- National Labs (NREL-Lead)
- **EERE** with the Sustainable Transportation Office (including engagement with other DOE offices)

Develop and enable the deployment technologies that produce and utilize green, low-cost H_2

Examples of Global Infrastructure Activities

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 33

Hydrogen Supply/Utilization Technology (HySUT)

- 18 companies (3 car companies) with plans to commercialize FCEVs and build infrastructure
- FCEVs & H₂ Stations- 40K & 160 by 2020, 200K and 320 by 225 and 800K & 900 by 2030.

H2Mobility

- Public-private initiative for nationwide H₂ infrastructure
- 50 H₂ stations and 5,000 FCEVs by 2015

UKH2Mobility

- Evaluating anticipated FCEV rollout in 2014-2015
- Will develop action plan to make UK a leading market for FCEVs

Scandinavian H2 Highway Partnership (SHHP)

- Denmark, Norway and Sweden
- 45 H₂ stations and a fleet of ~1K vehicles. Projects include H2Moves Scandinavia and Next Move
- 2012 MOU with industry and NGOs for FCEVs and H_2 infrastructure introduction by 2015 timeframe

International partnerships established to accelerate hydrogen infrastructure

Hydrogen & Fuel Cells Budget

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 34

	FY 15	FY 16	FY17	
Key Activity	(\$ in thousands)			
	Approp.	Approp.	Request	
Fuel Cell R&D	33,000	35,000	35,000	
Hydrogen Fuel R&D ¹	35,200	41,050	44,500	
Manufacturing R&D	3,000	3,000	3,000	
Systems Analysis	3,000	3,000	3,000	
Technology Validation	11,000	7,000	7,000	
Safety, Codes and Standards	7,000	7,000	10,000	
Market Transformation	3,000	3,000	3,000	
Technology Acceleration	0	0	13,000 ²	
NREL Site-wide Facilities Support	1,800	1,900	N/A	
Total	97,000	100,950	105,500	

Office	FY 2015
EERE	\$97.0M
Basic Science	\$18.5M
Fossil Energy, SOFC	\$30.0M

FY 2015 DOE Total: ~\$150M

Number of Recipients funded			
from 2008-2015			
Industry	>110		
Universities	>100		
Laboratories	12		

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D

²Combines Manufacturing R&D, Technology Validation, Market Transformation.

Sustained, stable funding requests and appropriations

Reduce GHG emissions by 17% by 2020, 26-28% by 2025 and 83% by 2050 from 2005 baseline climate Action Plan

By 2035, generate 80% of electricity from a diverse set of clean energy resources Blueprint Secure Energy Future

Double energy productivity by 2030 Department of Energy

Reduce net oil imports by half by 2020 from a 2008 baseline Blueprint Secure

Reduce CO₂ emissions by **3 billion metric tons** cumulatively by 2030 through efficiency standards set between 2009 and 2016

DOE Cost Targets and Status

Techno-Economic Analysis Guides R&D Portfolio

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 37

H₂ Production Pathways Cost Status

ENERGY Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 38

Current Technology

- Natural Gas (D/C)
- Electrolysis (D)

Near to Mid-Term:

- Electrolysis- Wind and Solar Powered (D/C)
- Bio-derived Liquids (D/C)
- Fermentation (D/C)

Long-Term (not shown): *Central Renewable H*₂

- Solar-based water splitting
- Photolytic Bio-hydrogen

H₂ from NG can be competitive today - renewables is a longer-term focus

H₂ Infrastructure Status

H₂ Delivery Infrastructure

 Current: 1,600 miles of H₂ pipeline

H₂ Station Options

- H₂ from central site:
 - >\$1-2 M for stations*
 - ~\$7-\$16/gge for H₂
- Distributed production:
 - Natural gas
 - Electrolysis

*~100-300 kg/day (range of cost)

H₂ Stations in the U.S.

• Current: ~50 total (~15 public)

• State Plans:

- CA- 100 stations, ~\$100M planned through 2023
- Northeast States & Hawaii
- 8 State MOU- 3.3M ZEVs by 2025

California Connecticut Massachusetts Maryland New York Oregon Rhode Island Vermont

H₂ delivery options present opportunities for expanding H₂ infrastructure

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 40

H₂ Infrastructure Status

H₂ Delivery Infrastructure

 Current: 1,600 miles of H₂ pipeline

H₂ Station Options

- H₂ from central site:
 - >\$1-2 M for stations*
 - ~\$7-\$16/gge for H₂
- Distributed production:
 - Natural gas
 - Electrolysis

*~100-300 kg/day (range of cost)

H₂ Stations in the U.S.

• Current: ~50 total (~10 public)

• State Plans:

- CA- 100 stations, ~\$100M planned through 2023
- Northeast States & Hawaii
- 8 State MOU- 3.3M ZEVs by 2025

California Connecticut Massachusetts Maryland New York Oregon Rhode Island Vermont

H₂ delivery options present opportunities for expanding H₂ infrastructure

Well-to-Wheels Analysis: GHG Emissions and Petroleum Use

 U.S. DEPARTMENT OF
 Energy Efficiency &

 Renewable Energy
 Renewable Energy

 Fuel Cell Technologies Office | 42

Program Record #13005: http://www.hydrogen.energy.gov/pdfs/13005_well_to_wheels_ghg_oil_ldvs.pdf

Electric Drive With Low Carbon Fuels - Pathway with lowest GHG emissions and petroleum use

Solar Sources: Opportunity for Renewable H₂

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 43

Solar water-splitting is an important longer term option

Biomass Resources: Opportunity for Renewable H₂

ENERGY Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 44

Bio-feedstock reforming is a near term option

Biogas Resources: Opportunity for Renewable H₂

U.S. DEPARTMENT OF ENERGY Renewable Energy Fuel Cell Technologies Office | 45

Wastewater treatment plants alone have the potential to provide enough hydrogen to support over ~1-3M FCEVs/year

H₂ Production and Delivery **Broad Technology Portfolio**

Energy Efficiency & Nard Renewable Energy Fuel Cell Technologies Office | 46

U.S. DEPARTMENT OF

Goal to develop technologies to produce H₂ from clean, domestic resources at a delivered & dispensed cost <\$4/gge by 2020 (<\$2 production,<\$2 delivery)

Example of Innovation: Tri-Generation

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 47

- Demonstrated co-production of electricity and hydrogen with 54% efficiency
- Uses biogas from wastewater treatment plant

Fountain Valley Demonstration Completed

- ~250 kW of electricity
- ~100 kg/day hydrogen capacity (350 and 700 bar), enough to fuel 25 to 50 vehicles.

Tri-Generation co-produces power, heat and hydrogen. World's First Fuel Cell and Hydrogen Energy Station demonstrated in Orange County (DOE/FCT project)

DOE Hydrogen and Fuel Cells Program

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 48

2020 Targets by Application

Mission

To enable the **widespread commercialization** of hydrogen and fuel cell technologies

Integrated approach to widespread commercialization of H₂ and fuel cells

Reduce GHG emissions by 17% by 2020, 26-28% by 2025 and 83% by 2050 from 2005 baseline Climate Action Plan

By 2035, generate 80% of electricity from a diverse set of clean energy resources Blueprint Secure Energy Future

Double energy productivity by 2030 Department of Energy

Reduce net oil imports by half by 2020 from a 2008 baseline Blueprint Secure

Reduce CO₂ emissions by **3 billion metric tons** cumulatively by 2030 through efficiency standards set between 2009 and 2016