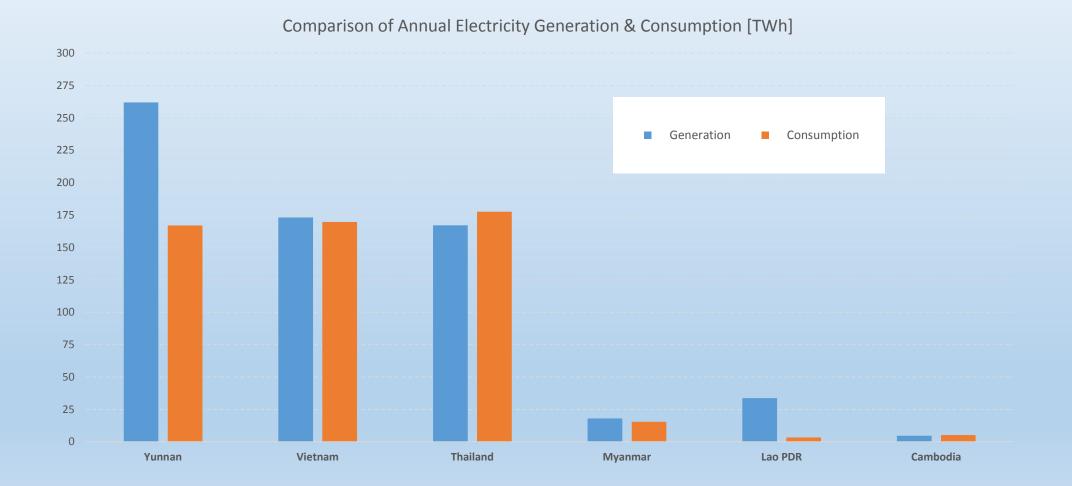
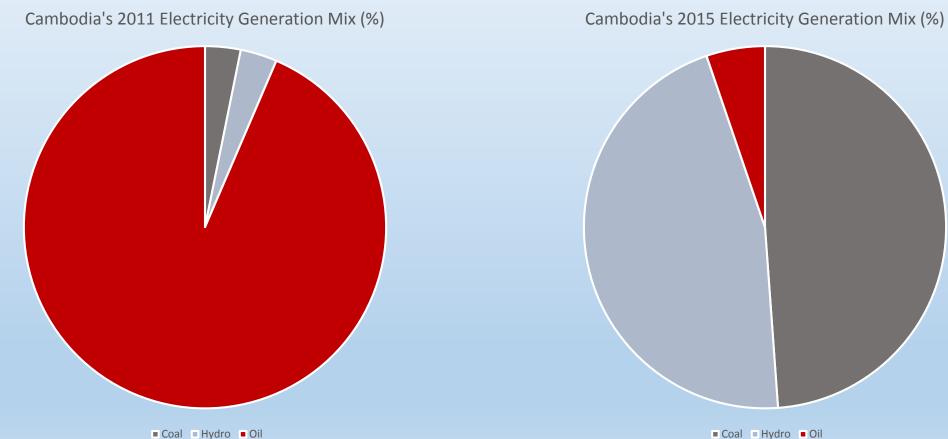

Rethinking Renewables in the Mekong Basin

Opportunities and Challenges for a Transboundary Renewables-Based Power Grid in the Lancang-Mekong Region


> Darrin Magee, Ph.D. Hobart and William Smith Colleges Geneva, NY

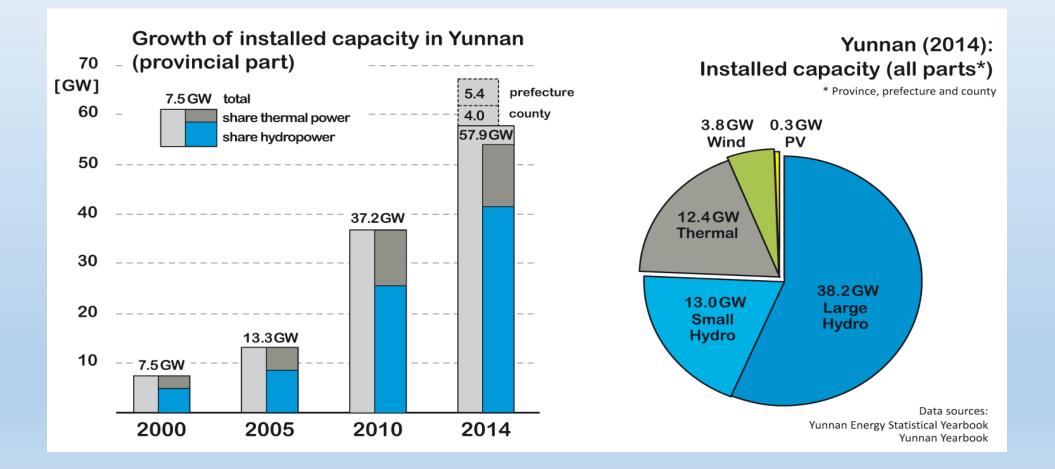
The Mekong region has an electricity problem


- Cambodia's electricity situation is improving but still fragile
- Numerous isolated grid systems
- Rural-urban disparities persist
- Demand growth outpacing supply growth
- Prices high, reliability low
- Diesel's share of electricity generation has drastically declined in recent years

Downstream electricity use low but growing

Despite changes, fossil fuels still play key role

Coal Hydro Oil


China's energy companies have a solution

- China holds world's greatest hydropower potential and abundant dam experience
- Southwestern China's Yunnan Province already has more installed hydro than Russia, India, Norway and Switzerland
 - ~ ¼ of Lancang-Mekong lies in Yunnan
- Since 2000, Chinese energy SOEs have been encouraged to "go outward" and seek overseas development projects
- BRI/OBOR strengthens that trend

Yunnan Hydro: ~800% growth 2000-2014

Dams large and small have a mixed record

- Developers: flood control benefits, electricity
- Local officials: poverty alleviation
- Hydro's fast ramp rate and ability to store renewable energy area its greatest asset
 - With smart grid, hydro can "firm" variable intermittent renewables like wind and solar
- Flood control capacity and power generation capacity vary inversely at any given time

Map source: Wang, W., Lu, H., Leung, L. R., Li, H.-Y., Zhao, J., Tian, F., Yang, K., & Sothea, K. (2017). Dam construction in Lancang-Mekong River Basin could mitigate future flood risk from warming-induced intensified rainfall. Geophysical Research Letters, 44. https://doi.org/10.1002/2017GL075037 (16).

Negative impacts of dams can be synergistic

- Negative socioeconomic, biophysical, and geopolitical impacts are well known (Tullos et al. 2009; Kibler & Tullos 2013)
 - Small is not always better
- Cascade impacts poorly understood
- High food security concerns in MSEA
- Institutions are manifold and weak
- Resettlement outcomes are often poor

Tullos, Desiree, Bryan Tilt, and C. Reidy. 2009. "Introduction to the special issue: Understanding and linking the biophysical, socioeconomic and geopolitical effects of dams." *Journal of Environmental Management 90 (Supplement 3):S203-S207.*

Snapshot of Negative Impacts

- Reservoirs trap sediment, flatten the hydrograph, reduce water quality, disrupt ecosystems, waterlog soils, and encourage methane production from rotting submerged biomass
- Socioeconomic

Biophysical

- Resettlement disrupts social networks and frequently involve inadequate compensation; migrants often lack skills to integrate into new communities; large reservoirs often disrupt local power systems (small hydro on tributaries)
- Geopolitical
 - Institutions for trans-boundary basin governance (even domestically) are limited, and of limited efficacy; regional distrust heightened by lack of transparency
- Impacts can be acute and far-reaching, upstream and downstream


Assessing and Modeling Dam Impacts

Biophysical	Socioeconomic	Geopolitical
BP1: Water Quality	SE1: Social Capital	GP1: Basin Population Affected
BP2: Biodiversity	SE2: Cultural Change	GP2: Political Complexity
BP3: Sediment	SE3: Local Hydropower Access	GP3: Legal Framework
BP4: Natural Flow Regime	SE4: Health Impacts	GP4: Domestic Governance
BP5: Climate and Air Quality	SE5: Income	GP5: Political Stability (intranational)
BP6: Landscape Stability	SE6: Wealth	GP6: Political Stability (international)
BP7: Impact Area	SE7: Macro Impacts	GP7: Impact on non-basin stakeholders

Integrated Dam Assessment and Modelling project (IDAM) captures positive and negative <u>magnitude</u> of each impact, as well as its <u>salience</u>, to facilitate comparing different scenarios and stakeholder perspectives. (*NSF Grant BCS-0826771*)

Cambodia: Strong solar potential, weak grid

- Population: 15 million
- Annual Electricity Consumption (2015): 5 Billion kWh
- Strong policy support for regional grid integration
- Low electrification rates, high tariffs
- High solar potential: 5 kWh/day/m²
 - 183 km² of solar panels could meet country's current electrical needs (=1/15 Tonle Sap area in dry season)
- High economic growth rates in spite of electricity limitations and costs

Can northern Europe interlink be a model?

- Denmark (Pop. 5.7M)
 - Annual Electricity Consumption (2015): 32 Billion kWh
 - ~50% renewable electricity; 40% of total demand met by wind
 - Wind generation has exceeded demand in the past
- Germany (Pop. 82 M)
 - Annual Electricity Consumption (2015): 536 Billion kWh
 - Roughly 30% renewable electricity, commitment to phasing out nuclear power
 - Dispatch priority for renewables
- Norway (Pop. 5.3 M)
 - Annual Electricity Consumption (2015): 119 Billion kWh
 - 623-km 1400-MW HVDC cable to Germany will allow Norway's hydropower to balance Germany's intermittent renewables by 2020
- Norway and Yunnan can be the batteries for high-solar and high-wind neighbors

Challenges are Real but Manageable

- Limited transboundary transmission capacity at present
- Wholesale market undeveloped
- Generator scheduling and dispatch rules need to be more transparent
 - Prioritize lowest cost? Lowest carbon? Balancing vs base load?
 - Balancing w/hydro may require re-regulation to meet downstream flow needs
- Regional mistrust among upstream-downstream countries is real
- Negative impacts of dams are often geographically concentrated
- Positive impacts are often geographically diffuse

Concluding Thoughts

- If we don't measure the things we value, we end up valuing the things we measure
 - Food security, biodiversity, are geopolitical stability are hard to measure
 - Regulating capacity and generating capacity are easy to measure
 - Electricity output is a crude proxy for the actual services we value that are provided by electricity
- How might state and non-state actors best promote energy development scenarios that sustain ecosystems and livelihoods, while meeting key development indicators?

My favorite China electricity story

- Or, how many light bulbs does it take to change China?
- Incandescent bulb phase-out by 2020
 - LEDs ~12x more efficient
 - 5 W vs 60 W, same light output
 - 55 W saved at bulb = 5500 W at power plant
- Efficiency Power Plants (EPP, 能效电厂)
 - "Changing light bulbs" at utility-scale (MW)
 - Pumps, fans, lighting, transformers, HVAC
- China Energy Research Institute
 - LEDs could save 85 billion kWh/yr
 - Roughly equals annual output of Three Gorges Dam

