

Towards 2018:

South Africa's 10-Year National Innovation Plan

Contents:

- Economic Transformation towards a Knowledge Economy
- 2. SA's "Grand Challenges"
- 3. Innovation as a National Imperative
 - Innovation Instruments
 - ii. Human Capital Development
 - iii. S&T Across Government
- 4. Conclusion

Policy & Institutional landscape

- 1. White Paper on S&T (1996)
- 2. R&D Strategy (2002) outlines new public technology missions:
 - i. Biotechnology;
 - ii. ICT;
 - iii. Advanced Manufacturing; and
 - iv. Resource Based Industries
- 3. Creation of the DST 2004

Policy & Institutional landscape

- 1. OECD Review of SA's NSI (2007)
- 2. DST 10 Year Plan Process
- 3. Linked to the NIPF and other government related initiatives

Economic Transformation

Science and Technology
REPUBLIC OF SOUTH AFRICA

Towards a Knowledge Economy

RESOURCE-BASED ECONOMY

The Knowledge Economy

The Four Pillars of the Knowledge Economy

Economic & Scientific Wealth

Source: DA King, Nature 430 (2004) 311 (15 July 2004)

Towards a Knowledge Economy

- Economic growth is driven by Innovation
- Knowledge is the basic form of capital for Innovation
 - Knowledge generation, accumulation and exploitation
 - Key driver for Innovation is "high-end" human capital: PhD
 - PhD as the key foundation for achieving the objectives of the National System of Innovation (NSI)

Principles of the 10 Year Innovation Plan

Principles informing 10 Year Innovation Plan:

- Articulates an innovation path to contribute fundamentally towards the transformation of the economy to a knowledge economy;
- Informed by 'triage' in decision-making i.t.o:
 - Focus on SA's areas of competence;
 - Global Objectives;
 - Societal transformation; and

 Based on premise that government's growth targets require a significant investment in innovation

"Grand Challenges"

- 1. Farmer to Pharma value chain to strengthen the bio-economy;
- 2. Space S&T;
- 3. Energy security;
- 4. Global-change science (climate change); and
- 5. Human and social sciences.

Knowledge Generation

Enablers **Technology development and innovation** Grand Farmer to Global Human & Space Energy science social pharma change science Human capital - South African research chairs initiative, Cross-cutting professional development programme, etc. Knowledge infrastructure – Science councils, stateowned enterprises, global projects

Knowledge Generation

- Early-stage research (for example nanotechnology where the innovation is uncertain and projected well into the future);
- Science missions (exploiting the 'living laboratories' of local resources and geographic advantage to generate meaningful scientific research outputs/knowledge products);

Knowledge Generation and exploitation

- Technology missions (for example advanced manufacturing where innovation is possible in the near future);
- Conventional sectors (institutional mandates for growing the research base such that the entire sector and the economy constantly benefits, for example agriculture or health)

Securing Competitiveness in the Forest Industry Cluster

INFORMATION TECHNOLOGY

- sensors, measuring and control
- computational intelligence, simulation and machine vision
- multimedia and telecommunication
- tomography

FORESTRY

ENERGY AND ENVIRON-MENTAL TECHNOLOGY

- biofuels, combustion technology
- ecobalances
- closed cycles
- energy-saving and emissions

MANUFACTURING TECHNOLOGY

- forestry machines
- process and production machinery
- material technology

FOREST INDUSTRY
Pulp and paper technology
Pulp and products industry
Wood products industry and processes
Machines, machinery and

CONSTRUCTION AND WOOD TECHNOLOGY

- > modification of wood
- construction technology and architecture
- > logistics, assembly

CHEMICAL TECHNOLOGY

- paper and bleaching chemicals
- surface treatment substances
- pigments, adhesives

BIOTECHNOLOGY

- enzymes
- rot prevention
- gene technology

MARKETS

- quality competitiveness
- price competitiveness
- environmental expertise

Innovation Instruments cont:

Bridging the "Innovation Chasm"

- 1. Technology Innovation Agency (TIA)
- 2. Intellectual Property Rights Bill (IPR)
- 3. Centres of Competence
- 4. Public Benefit Foundation (PBF)
- 5. Regional Innovation Systems
 - Technology Parks

Human Capital Development:

- Increase the number of knowledge workers:
 Researchers
- Increase the productivity of researchers
- Address inequalities: Race, gender, regional & institutional distribution
- Introducing appropriate Innovation Instruments in the National System of Innovation

Knowledge-based Economies

Strategic Positioning:

IN WHICH LEAGUE DO WE WANT TO PLAY?

Country	Factor
China??	X 0.34
India??	X 0.44
Brazil	X 1.9
Taiwan	X 2.3
Japan	X 4.9
USA	X 6.1
South	X 6.8
Korea	
UK	X 8.2
Australia	X 9.7

South Africa In 2026 (20 yrs)

A 5 x increase to present situation

South Africa In 2026 (20yrs)

A 10 x increase to future situation

Points of leverage from current situation:

- 1. < 10% proceed from a basic degree to pursue honours
- 2. Only 19% proceed from Masters to Doctoral studies

Research Outputs: Scientific Journals

Research Outputs: International Comparison

Research Outputs: Patents

PCT INTERNATIONAL APPLICATIONS ORIGINATING FROM SELECTED DEVELOPING COUNTRIES

S&T Across Govt

- Inter-Departmental S&T initiatives (Technology Managers Forum);
- Infrastructure investment in line with ASGISA (i.e. rail, road, air, energy, etc.);
- Public procurement innovation (support local innovations incl. SMME's and techno startups); and
- Monitoring S&T in SA (annual reviews, surveys and patent statistics).

OECD Review: Key Findings

- Human Capital for SET is sub-optimal.
- A long term planning Framework is needed.
- The governance framework needs more vertical and horizontal integration.
- There is an innovation chasm with an insufficient number of research products directly influencing the real economy.
- Science, Technology and Innovation for the 2nd economy should be more pronounced and visible.

Conclusions

- Application of knowledge to generate new products and services;
 - Five "grand challenges" as a mechanism to create focus and developing a research agenda with specific national outcomes;
- Ensure innovation as a national competence is strengthened by appropriate mechanisms (i.e. TIA; Centres of Competence);
- Enhance country's ability to generate knowledge including early stage research areas;

CONCLUSION (CONT)

- Infrastructure
- Internationalisation of our Research Enterprise

KE A LEBOGA

Thank you