21st Century Diplomacy

FOREIGN IS
CLIMATE policy
21st Century Diplomacy: Foreign Policy is Climate Policy

Lead Editors: Alexander Carius (adelphi), Noah Gordon (adelphi), and Lauren Risi (Wilson Center)

Project Managers: Alexander Carius (adelphi) and Lauren Risi (Wilson Center)

Project Advisors: Sharon Burke (New America), Maxine Burkett (Institute for Climate and Peace), and Geoff Dabelko (Ohio University)

Design: Kathy Butterfield (Wilson Center)
Published September 2020

Acknowledgements: The Wilson Center and adelphi wish to thank the project advisors and contributing authors for sharing their insights and expert analysis. A special thank you to Amanda King, Magda Baranowska, Eliana Guterman, Wania Yad, Matthew Gallagher, and Cindy Zhou for their assistance to the project.

This report was financed by the German Federal Foreign Office and the Wilson Center. The analysis, results, and recommendations in this report represent the opinions of the authors and are not necessarily representative of the position of any of the partner organizations.
21st Century Diplomacy

FOREIGN IS CLIMATE policy

with contributions from:

<table>
<thead>
<tr>
<th>Tobias Adrian</th>
<th>Hilda Heine</th>
<th>Frédéric Samama</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.E. Lolwah R Al-Khater</td>
<td>Dina Ionesco</td>
<td>Kori Schake</td>
</tr>
<tr>
<td>Sue Biniaz</td>
<td>Wolfgang Ischinger</td>
<td>Cynthia Scharf</td>
</tr>
<tr>
<td>Patrick Bolton</td>
<td>Dhanasree Jayaram</td>
<td>Helga Maria Schmid</td>
</tr>
<tr>
<td>Sharon Burke</td>
<td>Kathy Jetñil-Kijiner</td>
<td>Anne-Marie Slaughter</td>
</tr>
<tr>
<td>Maxine Burkett</td>
<td>Michael Kugelman</td>
<td>Romain Svartzman</td>
</tr>
<tr>
<td>Alexander Carius</td>
<td>Tatiana Mitrova</td>
<td>Dennis Tänzler</td>
</tr>
<tr>
<td>Morgan Després</td>
<td>Oliver Morton</td>
<td>Scott Tong</td>
</tr>
<tr>
<td>Andres Franzetti</td>
<td>Vanessa Nakate</td>
<td>Mariam Traore Chazalnoël</td>
</tr>
<tr>
<td>James T. Gathii</td>
<td>Simon Nicholson</td>
<td>Huiyao Wang</td>
</tr>
<tr>
<td>Philip H. Gordon</td>
<td>Ceyla Pazarbasioglu</td>
<td>Les Williams</td>
</tr>
<tr>
<td>Noah Gordon</td>
<td>Luiz Awazu Pereira da Silva</td>
<td></td>
</tr>
<tr>
<td>Thomas Greminger</td>
<td>Lydia Powell</td>
<td></td>
</tr>
<tr>
<td>Selwin Hart</td>
<td>Lauren Risi</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Introduction | 01

Climate Superpowers

The actions of the United States, China, and India will largely determine climate’s impact on the globe. At the same time, climate change is already influencing today’s era of great power competition and redefining the landscape of global leadership.

OP-ED
06 “Climate Superpowers?” Why the Cold War is the Wrong Analogy for our Heating Planet | Huiyao Wang
10 Defanging Great Power Competition | Kori Schake

IN DEPTH
13 Climate Superpowers | Lydia Powell
29 Harvesting Ill Will: Can the U.S. and China Turn a Budding Cold War into a Clean Energy Space Race? | Scott Tong

Climate Change, Equity & the Future of Democracy

The climate crisis lays bare issues of inequity and injustice. Those least responsible for climate change are most vulnerable to its impacts. How can the foreign policy community accelerate and align efforts to address climate change with the global rallying cry for a more equitable and just world?

OP-ED
42 The Solidarity America Needs | Anne-Marie Slaughter & Sharon Burke
47 What Foreign Policy Needs to do to Address Climate Change in the Developing World | Vanessa Nakate

IN DEPTH
51 Without Centering Race, Identity, and Indigeneity, Climate Responses Miss the Mark | James T. Gathii

New Modes of Multilateralism

The Paris Agreement and UNFCCC process remains the primary avenue for current climate efforts and nation-state-to-nation-state diplomacy. This traditional mode of diplomacy is indispensable, but neglects the transformative power of sub- and non-state actors that are teaming up to take progressive action and form new leadership coalitions. What do these new modes of multilateralism mean for 21st century diplomacy?

OP-ED
64 Building Back a Better EU Foreign Policy: Climate and Security After COVID-19 | Wolfgang Ischinger
68 To Build Back Better, We Must Cooperate on Climate Change | Helga Maria Schmid

INTERVIEW
72 The Role of Multilateralism and Multi-level Governance: An Interview with OSCE Secretary General Thomas Greminger | Ambassador Thomas Greminger

IN DEPTH
77 “Multilateralism,” the Climate Challenge, and the (Greater Metropolitan) Paris Agreement | Sue Biniaz

Climate Change & Financial Stability

Storm surges leave people stranded in their homes. Climate change can leave billion-dollar assets and entire sectors stranded, their value eroded by the changing economic landscape. Central banks, insurers, and financial regulators need to account for climate risk, including in international negotiations.

OP-ED
88 To Protect Financial Stability, Confront Climate Change | Tobias Adrian
92 How to Defuse the “Double Jeopardy” of Climate and Financial Risks in Developing Countries | Ceyla Pazarbasioglu
96 Financial Stability in the Age of Global and Systemic Ecological Risks (“Green Swans”) | Frédéric Samama, Patrick Bolton, Morgan Després, Luiz Awazu Pereira da Silva & Romain Swartzman
Climate change is already a key driver in people’s decisions to move. The current foreign policy narrative on climate-affected migration focuses on security threats, border controls, and refugee management. But to empower those who are at the climate and mobility crossroads to enjoy meaningful choices, the diplomatic community will need to facilitate the protection of life and dignity, whether individuals and communities are on the move or choosing to stay in place.

Geoengineering is deliberate large-scale intervention in the Earth’s natural systems to combat climate change. Solar radiation management (SRM) is arguably the most likely technology to be deployed. An appealing technology option for some and risky endeavor for many, the lack of international norms or regulations on SRM research and deployment is a pressing diplomatic priority.
Introduction

21ST CENTURY DIPLOMACY:

Foreign Policy IS Climate Policy

Climate change will upend the 21st century world order. It will redefine how we live and work, and change the systems of production, trade, economics, and finance. Even now, in the midst of a global pandemic, it is clear that climate change will be the defining issue of this century. In fact, COVID-19 has only underscored the inadequacy of our responses to global crises and heightened the urgency of this call to action. 21st century diplomacy will have to raise climate ambition, shape the transformative systems change needed, and promote and facilitate new modes of multilateral collaboration.

Yet, the world is woefully unprepared for the cascading impacts of climate change. We have not even begun to recalibrate our lives, our economies, or our policies on the scale required. Year after year, we stand in awe of the record-breaking wildfires, hurricanes, droughts, and floods across the globe, as if the previous year hadn’t sent up its own warning flares. In many countries, climate change is still largely regarded as primarily an environmental issue. In some key leadership circles and constituencies, even the basic science is questioned. It is far past time for all public diplomacy leaders to join the environment ministries, mayors, conservation groups, forward-thinking private companies, and burgeoning youth movements in taking steps to address climate change.

Climate change is doing more than bleaching coral reefs, stranding polar bears, and causing big storms (all of these things on their own a cause for concern). It is driving change as fundamental as where people can live and where their food comes from, altering the balance of power, stranding assets, changing capital flows, and deepening inequity in the process. These fundamental changes and the associated risks demand leadership and custodians that steer global transformation processes.

This transformative agenda has its global political foundation with the Paris Agreement (decarbonizing the world) and the 2030 Sustainable Development Agenda (managing a just transition and introducing a global circular economy). Leaders of more than 190 nations agreed to these sweeping programs for change only a few years ago. Recent initiatives like the European Union’s Green Deal and UN and domestic efforts to build back better in response to COVID-19 promise growing political ambition.

Over the last decade, foreign policy institutions have taken steps to better understand climate risks and inform action. At the UN Security Council (UNSC), the United Kingdom, Germany, and Sweden have elevated climate risks on the UN global security agenda. The German Foreign Office commissioned a global climate risk assessment, and Small Island Developing States continue to urge incoming Security Council Members to address climate change and recognize that it poses an existential threat to their countries. The European Union developed a climate diplomacy strategy to (1) advocate for climate change as a strategic priority in diplomatic dialogues; (2) support implementation of the Paris Agreement in the context of low-emission and climate resilient development; and, (3) increase efforts to address the nexus between climate, natural resources, prosperity, stability, and migration.

But more is needed. For the past decade, the World Economic Forum’s Global Risk Report has consistently identified environmental degradation and climate change-related impacts as among the most severe and likely risks facing the globe. The ambition and scale of diplomacy in the 21st century must match the magnitude and likelihood of these risks.

It will not be easy. The worsening climate crisis and efforts towards transformative change are further compounded by the governance crisis we see around the world. Rising populism, increased nationalism, and fear-driven insularity are undermining the very tools required to chip away at the risks posed by climate change. A coordinated, global response is the only effective means to stem the coming crisis. A response that is not dependent on political parties or single ministries or agencies; rather, one that is taken up and addressed across agencies and the full political spectrum. Absorbing the impacts of climate change will require agility on the part of financial institutions, new supply chains and trade partners, alternative migration pathways, the unpacking of decarbonization and its impacts and, perhaps most importantly, new modes of cooperation. Against this background, the foreign policy implications of climate change and climate policy are all encompassing, cutting across portfolios and calling for an all hands on deck response.

Efforts to mitigate climate change must be firmly ensconced in broader governing bodies and regulatory institutions. The world has set course for a future where temperatures are 3-4°C higher by the end of the century. Set against the 1.1°C rise experienced since the industrial revolution, our current trajectory should be setting off alarm bells in every corner of the globe. To limit temperature rise to 1.5°- 2°C above pre-industrial levels by 2100 (the goal set forth by the Paris Agreement), not only will we have to reduce global emissions to net zero, we will need to pursue negative emissions. Deploying the technologies required to achieve negative emissions, like carbon dioxide
removal or solar radiation management, brings into the equation a host of questions that, if left unanswered, could further exacerbate the impacts of the very phenomenon they seek to keep at bay and spark their own crisis.

To chart a new course forward, the Wilson Center and adelphi invited a diverse set of foreign policy leaders, analysts, and thematic experts from around the globe to elucidate the connections between climate change and broader foreign policy objectives. What are the challenges ahead? And perhaps more importantly, where are the opportunities for driving transformative change towards a decarbonized world that is both more prosperous and more equitable?

We asked contributors to provide insights on new modes of multilateralism, the steps needed to prevent risky interventions into the earth system, and how to steer a process that will redefine the landscape of global leadership. Our authors have explored how central banks, insurers, and financial regulators need to account for climate risk, and how climate change affects the future of equity and democracy.

Our hope is that these ideas will spark debate and action among foreign policymakers and analysts to expand the diplomatic toolbox and make climate policy an essential tool for 21st century diplomacy. Global stability and prosperity depend on limiting the climate crisis and attenuating its impacts. Our success in meeting this challenge depends on unprecedented global collaboration, the achievements of which must become the North Star of diplomacy. Because Foreign Policy is Climate Policy.

The ambition and scale of diplomacy in the 21st century must match the magnitude and likelihood of global climate risks.
Great power competition has cast a shadow over our global response to the COVID-19 pandemic. The outbreak should have been a chance for China and the United States to work together for a common cause. Instead, the pressures it has unleashed have inflamed tensions between the two countries.

The looming climate crisis is also a double-edged sword for great power relations. On the one hand, this global challenge that no country can solve alone should be a catalyst for cooperation. On the other hand, climate change can act as a destabilizing “risk multiplier” in geopolitics. It aggravates stressors on societies, economies, and institutions, and opens new areas for competition that can exacerbate friction between states.

Cohesion or conflict? Which of these countervailing forces of climate change prevails may be the most important question of our lifetimes. The answer will be shaped by political will and leadership. It will also depend on the course of China-U.S. relations.

China and the United States are the world’s two largest economies, energy consumers, and carbon emitters, jointly accounting for over 40 percent of global emissions. They are leaders in clean tech, industry standards, and represent the developed and developing world respectively. Interplay between these two “climate superpowers” will shape prospects for effective climate governance and the development and deployment of clean technologies.

If they can work together, China and the United States have the critical mass to put us on the road to a sustainable climate future. But if they cannot cooperate, it is difficult to see how we can get there.

Great Power Relations in the Age of Climate Change

Of the many historical analogies applied to China-U.S. relations in the 21st century, it is the Cold War metaphor that has become most pervasive. Viewed through this lens of bipolar zero-sum competition, the divisive potential of a climate crisis stands out. Environmental flux and the quest for...
The second feature is multipolarity. Long-term structural trends, in particular the rise of Asia and emerging markets, mean that no single power can dictate global norms and rules by itself. The shift to a carbon-neutral world presents many tangible rewards for China and the United States. It would help both countries to protect their environments, create wealth for their citizens, and edge closer to energy security. Reduced dependency on fossil fuels and the shipping lanes that transport them could also reduce tensions in potential flashpoints such as the South China Sea.

Clean tech will be a huge growth sector in years and decades to come—and it will have to be, given that fossil fuels still account for 84 percent of global primary energy consumption. The World Bank estimates that climate change commitments have opened nearly $23 trillion in opportunities for climate-smart investments in emerging markets alone by 2030. Chinese and U.S. companies have complementary strengths in low-carbon sectors. China is a top manufacturer of climate-friendly technologies such as wind and solar PV; the United States is a leader in systems integration of these products into power grids and buildings, and smart cities. By working together, they can tap synergies that integrate these products into power grids and cities. By working together, they can tap synergies that integrate these products into power grids and cities.

But the cooperative logic of climate change goes far beyond simply avoiding disastrous lose-lose outcomes. The shift to a carbon-neutral world presents many tangible rewards for China and the United States. It would help both countries to protect their environments, create wealth for their citizens, and edge closer to energy security. Reduced dependency on fossil fuels and the shipping lanes that transport them could also reduce tensions in potential flashpoints such as the South China Sea.

Clean tech will be a huge growth sector in years and decades to come—and it will have to be, given that fossil fuels still account for 84 percent of global primary energy consumption. The World Bank estimates that climate change commitments have opened nearly $23 trillion in opportunities for climate-smart investments in emerging markets alone by 2030. Chinese and U.S. companies have complementary strengths in low-carbon sectors. China is a top manufacturer of climate-friendly technologies such as wind and solar PV; the United States is a leader in systems integration of these products into power grids and cities. By working together, they can tap synergies that integrate these products into power grids and cities. By working together, they can tap synergies that integrate these products into power grids and cities.

But the cooperative logic of climate change goes far beyond simply avoiding disastrous lose-lose outcomes. The shift to a carbon-neutral world presents many tangible rewards for China and the United States. It would help both countries to protect their environments, create wealth for their citizens, and edge closer to energy security. Reduced dependency on fossil fuels and the shipping lanes that transport them could also reduce tensions in potential flashpoints such as the South China Sea.

Clean tech will be a huge growth sector in years and decades to come—and it will have to be, given that fossil fuels still account for 84 percent of global primary energy consumption. The World Bank estimates that climate change commitments have opened nearly $23 trillion in opportunities for climate-smart investments in emerging markets alone by 2030. Chinese and U.S. companies have complementary strengths in low-carbon sectors. China is a top manufacturer of climate-friendly technologies such as wind and solar PV; the United States is a leader in systems integration of these products into power grids and cities. By working together, they can tap synergies that integrate these products into power grids and cities. By working together, they can tap synergies that integrate these products into power grids and cities.

But the cooperative logic of climate change goes far beyond simply avoiding disastrous lose-lose outcomes. The shift to a carbon-neutral world presents many tangible rewards for China and the United States. It would help both countries to protect their environments, create wealth for their citizens, and edge closer to energy security. Reduced dependency on fossil fuels and the shipping lanes that transport them could also reduce tensions in potential flashpoints such as the South China Sea.

Clean tech will be a huge growth sector in years and decades to come—and it will have to be, given that fossil fuels still account for 84 percent of global primary energy consumption. The World Bank estimates that climate change commitments have opened nearly $23 trillion in opportunities for climate-smart investments in emerging markets alone by 2030. Chinese and U.S. companies have complementary strengths in low-carbon sectors. China is a top manufacturer of climate-friendly technologies such as wind and solar PV; the United States is a leader in systems integration of these products into power grids and cities. By working together, they can tap synergies that integrate these products into power grids and cities. By working together, they can tap synergies that integrate these products into power grids and cities.
China can cooperate more with the United States at the sub-national level. For example, the California-China Climate Institute was launched last September to exchange ideas, bring experts back and forth between the two countries, and promote more ambitious policy. There is scope for more such platforms to facilitate cooperation between policymakers and industry, such as climate summits at the state-provincial or municipal level, though sub-national governments will eventually need more support from their federal or central counterparts.

Like the Pugwash Conferences on science and world affairs served as a channel for dialogue during the Cold War, Track II diplomacy can play an important role in China-U.S. climate cooperation. More exchange between think tanks and nonprofit organizations across the Pacific can help strengthen understanding and explore solutions for mutually beneficial collaboration.

Once the right political window opens in Washington, China and the United States should seize the chance to foreground climate change in the bilateral relationship. In this way, they can nurture its cohesive potential and help proactively manage its destabilizing effects.

It is perhaps inevitable that the China-U.S. relationship will be colored by rivalry and disagreements. But we must not let unbridled competition undermine efforts to overcome the graviest threats to humanity. The Cold War shows it is possible for the two adversaries to cooperate on existential threats even amidst intense strategic rivalry. Y et in many leading powers to cooperate on existential threats to humanity. The Cold War shows it is possible for the two adversaries to cooperate on existential threats even amidst intense strategic rivalry.

Endnotes

Climate Superpowers

China’s unwillingness to become a ‘responsible stakeholder’ is the issue of contention in great power competition. The objective of U.S. policy continues to be to compel China to abide by rules. The urgency of climate in Western policy agendas gives China significant leverage to exact technology and financial aid, or asymmetric policy capitulations (for example, averting our eyes from Chinese aggression in the South China Sea in order to keep cooperation on climate). But if handled smartly in Western policies, climate also has the potential to defang great power competition by fostering change within China and better organizing the West with regard to channeling China into rule-abiding behavior.

China is not a superpower in any way except one. It does not have a military that could defeat the United States’ despite the anguished concern of military planners. Its per capita gross domestic product of $16,842, even at purchasing power parity, ranks it 79th in the world, between Iraq and the Maldives. Its GDP growth rate has halved since 2008, its debt has quintupled, and its democratic dividend of working age population is about to reverse into an aged population without an adequate social safety net of working-age population to support it. It lacks self-sufficiency in food, water, and energy. The one metric in which China is a superpower is pollution, China’s carbon emissions surpass those of the United States and European Union combined.

Surprising Progress

Strange as it may seem, despite withdrawing from the Paris Climate Accords, despite a regulatory rollback at both the federal and state levels and the overt hostility of the Trump Administration, the United States was in 2018, according to UN Secretary General Antonio Guterres, on track to meet the climate goals in the Paris Accords. The U.S. is achieving its goals through a combination of states like California and cities like Chicago setting rigorous standards,
incentives offered by philanthropists like Michael Bloomberg, corporations like Apple Computers seeking brand association with advancing pro-climate policies, the military’s aspiration to reduce reliance on vulnerable or expensive supplies, and growing public awareness driving consumer choices in climate-protecting directions.

This disparity would seem to further aggravate great power competition. China has a weapon —pollution—it can leverage to influence government policies in the West, where vibrant civil societies (absent in China itself) affect policy. China can piously claim to be a poor country in need of Western technology and financial assistance to reduce its carbon footprint, and then use those resources to its advantage in economic competition with Western companies and for military improvements that expand its potential to threaten Western allies and interests. It can confront Western policymakers with trade-offs between their public cares about (climate) and systemic corruption of the rules-based international order (rejecting Tribunal findings) or direct threats that may not seem relevant to many in the West (Hong Kong, Taiwan).

But ruthless and repressive as the Chinese government is toward its own people, it is not wholly insensitive to public services of countries that do not.6

We know what the Chinese government is afraid of: its own people. It fears they will demand outcomes that cannot be delivered, especially economically. Given Chinese public concern about pollution, the government may not carry the argument with its own public that rich countries’ historical responsibility for environmental damage precludes assigning any responsibility for current damage on poorer countries creating it. And that gives the West a second weapon: using economic policies that would penalize China for climate damage as a way to channel the Chinese economy into accepting the practices other countries abide by on climate, and perhaps set an important precedent for wider rule abiding.

A Climate Club

As Jeff Colgan has argued, the urgent needs of addressing climate change offer the opportunity for the United States and its allies to draw China into more cooperative participation with the rules-based order. Colgan proposes the creation of a ‘climate club’ of countries that meet agreed minimum standards of climate preservation policies and apply trade tariffs to products and services of countries that do not.4

Creating a climate club like this would not address the security problems of Chinese state firms’ military links or espionage, but it could provide an important area of cooperation to stabilize great power competition and begin building trust that will be essential for progress in other more contentious areas, like arms control or resolving competing territorial claims. It would also give Western powers a positive and publicly popular agenda to organize around, something less fractious than 5G infrastructure decisions. In doing so, it would strengthen the major advantage the U.S. has in great power competition, which is the ability to play team sports.

From Competition to Climate Protection

Current trends both in China and the West risk militarizing the U.S.-China competition. China has accelerated its repression against Hong Kong political activism, Uighur culture, and disputed territorial boundaries in all azimuths from the Himalayas to the East China Sea. The U.S. is militarily biased toward military policy tools because of chronic under-investment in other government agencies, and the erratic belligerence of the Trump administration sends confusing signals that can exacerbate crises.

Developing a climate agenda that advances the U.S. objectives of pulling China into more rule-abiding international behavior would be a major victory in the emergent great power competition, organize Western countries into a sustainable common front pushing China on an issue of great concern to their own publics, prevent China from utilizing climate as a predatory economic policy, and create the basis for greater trust and cooperation on other issues. And, incidentally, provide a way to prevent terrible damage to our planet.
In 2019, China was the top emitter, accounting for 28 percent of global carbon emissions, with the United States in second place with 15 percent of emissions. Inevitably, the economic and technological competition between China and the United States will strongly influence the effort to climate-proof the world. This is not necessarily a bad thing. Competition between superpowers can accelerate progress in identifying economic and technological pathways to decarbonization. Climate change provides an opportunity for both the United States and China to increase cooperation and signal their commitment to the rest of the world, even if hostility persists in other spheres of engagement.

Participation in Multilateral Agreements

In 2017, when the United States announced its withdrawal from the Paris Agreement, China was largely credited with taking over leadership on climate action by virtue of its endorsement of the agreement. The history of the United States and the USSR working together in the area of space research, despite being at the opposite ends of the Cold War, offers hope for cooperation between China and the United States on responses to climate change.

The sheer size and economic weight of China and the United States also means that they are climate superpowers by dint of their potential to mitigate climate change. China and the United States account for roughly 30 percent of global economic output and are responsible for 43 percent of cumulative carbon emissions (see Chart 1). In 1990, China was the top emitter, accounting for 28 percent of global carbon emissions, with the United States in second place with 15 percent of emissions. Inevitably, the economic and technological competition between China and the United States will strongly influence the effort to climate-proof the world.

This is not necessarily a bad thing. Competition between superpowers can accelerate progress in identifying economic and technological pathways to decarbonization. Climate change provides an opportunity for both the United States and China to increase cooperation and signal their commitment to the rest of the world, even if hostility persists in other spheres of engagement.

The sheer size and economic weight of China and the United States also means that they are climate superpowers by dint of their potential to mitigate climate change. China and the United States account for roughly 30 percent of global economic output and are responsible for 43 percent of cumulative carbon emissions (see Chart 1).
to the Paris Agreement was substantially less ambitious than it should have been on the basis of fairness and equity, and despite the fact that China, together with India, accounted for more than half of the increase in carbon emissions in 2017.

The 2015 Paris Agreement gave every country in the world the ability to set its own goals to prevent a 2°C increase in global temperature by the end of the century. The agreement is legal in character and contains provisions for reviewing the NDCs every year to move the cumulative contributions closer to the goal of limiting temperature increases. However, the NDCs are often described as vague, aspirational, and unenforceable; the Agreement’s provisions for monitoring, reporting, and verification are far from watertight; and the mechanisms to support poor countries are underdeveloped.

In the elegant framework of Robert Putnam’s two-level games theory, China’s NDCs leveraged the strengths and weaknesses of the Paris Agreement to pursue domestic and international goals while minimizing economic compromises. China’s emphasis was on economic costs and international reputation. As a superpower in waiting, the prestige and soft power that comes with being part of a multilateral agreement mattered more to China than to the United States.

As a democracy, the U.S. approach to multilateral agreements has been more fluid, reflecting the ideological changes in the country’s leadership. Years of effort to improve bilateral climate cooperation with China under the previous U.S. administration led to a joint statement by China and the United States in 2014 where both announced their 2030 climate targets. This paved the way for China’s participation in the Paris Agreement. The current administration chose to upset the Paris table, taking advantage of domestic politics to legitimize its hawkish approach internationally. As the reigning superpower, the United States could afford to shun moral high ground and adopt positions that give primacy to the market over the state. This position may yet be altered when the country’s leadership changes in the future. Technically, under Article 28 of the Paris Agreement, the United States will remain under the Paris Agreement until 5 November 2020. Ironically, this date falls two days after the U.S. presidential election, in which commitment to the Paris Agreement may play a role.

Notwithstanding the decision of the current U.S. administration to withdraw from the Paris agreement, 15 U.S. states and territories have taken legislative or executive action to move toward a 100 percent clean energy future. The bipartisan U.S. climate alliance coalition of 24 state governors—representing more than half of the U.S. population and an $11.7 trillion economy that would be the third-largest in the world—is committed to reducing carbon emissions by 26-28 percent below 2005 levels by 2025.

Overall, both the United States and China are moving towards a low carbon future, although the motivations and mechanisms for action differ. As a wealthy liberal democracy, the United States is more dependent on democratic choices of its people and the outcome of market competition between technologies. China, on the other hand, is a middle-income country that depends more on executive mandates on governance and technology to achieve roughly the same goal of decarbonization.

Harnessing Markets

The United States is the largest producer and consumer of oil and gas and the second largest producer and consumer of fossil fuels (oil, gas, and coal) after China. In 2018 the United States produced more than 15.3 mbpd (million barrels per day) of oil, compared to the 12.2 mbpd of oil that Saudi Arabia produced. That same year, Russia—the largest exporter of gas—produced about 670 bcm (billion cubic meters) of natural gas, while America produced over 830 bcm of natural gas (see Chart 3). The ability to harness technology and capital to bring domestic energy resources into production influences the United States’ regional development, environmental quality, and national security through energy and climate policies.
Domestic energy production that reduces energy imports has always been a component of U.S. national security. This idea, captured in the slogan “energy independence,” has influenced U.S. energy policy for over four decades. Under the energy independence narrative, actors with economic and political interests in the domestic natural resource industries were able to present any commitment to reduce carbon emissions as a threat to national security. The slogan of “energy dominance” adopted by the current government is broader as it includes security. The slogan of “energy dominance” adopted by the current government is broader as it includes security. The slogan of “energy dominance” adopted by the current government is broader as it includes security. The slogan of “energy dominance” adopted by the current government is broader as it includes security. The slogan of “energy dominance” adopted by the current government is broader as it includes security.

Market forces that strongly influence the production and flow of domestic energy resources are driving critical shifts in the United States’ fuel basket, with the unintended side benefit of reducing carbon emissions. In the 1980s and 90s, the United States was referred to as the Saudi Arabia of coal as it had a quarter of world coal reserves, the largest in the world. In 2000, when coal accounted for roughly 50 percent of power generation, the U.S. electricity industry believed that the transition away from coal would be very expensive, and potentially impossible. Unlike oil and gas production, which is largely confined to four states, 26 states produced coal and thus there was greater political opposition to a shift away from coal.

Yet in the last two decades, relatively cheap natural gas combined with the higher efficiency of gas-based power plants has substantially displaced coal in power generation. In 2015, the share of coal in power generation fell to 35 percent, with gas increasing its share to 32 percent. Since gas-fired power plants emit half as much carbon as coal plants, in 2015, the U.S. emissions were 21 percent lower than 2005 levels—the lowest emission levels since 1992. In 2019, coal accounted for just 23 percent of power generation.

A similar transition has already begun to displace both coal and gas in favour of solar and wind for power generation, though this shift was not entirely driven by the market. State interventions in the form of tax credits for clean energy at the federal level and mandates to absorb clean energy through portfolio standards, net metering, and feed-in-tariffs at the state level are pushing investment in clean energy that could eventually displace natural gas.

In 2018, the United States generated 10 percent of its electricity from clean energy (not including hydro and nuclear), higher than the 8 percent share in China, though China generates more electricity from clean sources in absolute terms. As of 2018, U.S. carbon emissions were 10 percent below its 2005 levels, which is roughly two-thirds of the way to the Paris Agreement target of 26 percent below 2005 levels by 2025.

As of October 2019, 39 states and the District of Columbia have state-developed mandatory net metering that facilitates installation solar panels on private properties.
patterns and levels of wealth. Because of the large uncertainties in the effects of climate change and the subjectivity of the discount rate, estimates of the social cost of carbon differ widely, from $10.2/ton to $105,213/t.38 Anecdotal evidence from protests against taxes on fossil fuels in France39 and Australia highlights the complexity in imposing market-based solutions to address climate change.

U.S. reliance on markets has so far pushed the energy sector towards lower-carbon fuels. Nevertheless, the critical force behind decarbonization was American public investment in the production of knowledge and technologies that were leveraged by capital to produce lower carbon energy.40 Investment in research and energy by the United States is a public good that makes a huge contribution in shaping technological responses to climate change.

Imposing Mandates

In 2018, China produced more coal than the United States produced oil and gas in energy equivalent terms.41 Electricity generated from United States produced oil and gas in energy from Western Europe in the 1990s.43 Provincial and local governments generated skilled and semi-skilled jobs by setting up solar manufacturing facilities, leveraging funding support for “strategic industries” from the central government.44 Economies of scale from this expansion led to a dramatic reduction of solar panel and module cost for renewable energy consumers initially in Europe and eventually in other parts of the world.45 From a climate perspective, this cost reduction is a public good because relatively poor countries can now afford large clean energy projects thanks to imports of cheap clean energy equipment from China.

In the early stages of solar manufacturing, China catered to markets in Western Europe, which tended to create excess capacity as European policies to subsidise installations of solar panels kept changing. The need to absorb excess capacity drove domestic installations of solar panels in China.46 Following Germany’s lead, China introduced attractive feed-in-tariffiii to promote the domestic use of solar energy in 2013, and by 2015 China surpassed Germany as the largest market for solar energy in the world.47 China’s wind energy industry traced a similar path, as acquisition of small German companies with cutting-edge wind turbine technology eventually put China in the lead. China’s leadership in electricity storage and electric vehicles is now following a similar approach, with rapid acquisition of technology and resources to scale manufacturing to meet state and federal level mandates and targets. China now easily takes all the prizes in the production and consumption of clean energy (see Chart 4).43

iii Feed-in-tariff is the price offered to roof-top or equivalent private producers of solar electricity who sell into the grid. This is generally higher than the average electricity tariff which serves as an incentive to install solar panels and generate solar electricity.

China derives its economic strength more from the size of its population than from the economic efficiency and knowledge-driven productivity that supported U.S. power after the Second World War. At $15,376 (in purchasing power parity in current international dollars), China’s per person income was a quarter of the United States’ per person income in 2018.46 China is keen to catch up on this vital economic parameter, irrespective of whether this is fueled by brown or green energy. It was to this end that China built clean energy manufacturing capacity.44 Essentially, China leveraged its industrial policy in its climate and clean energy policies—not the other way around.

From China’s economic vantage point, the global conversation about climate change has moved from “well-intentioned” environmentalism to the future geopolitical international economic order, and not investing in low carbon energy sources would affect China’s economic and trading competitiveness.45 Trade barriers in clean energy, such as the carbon related border adjustment taxes proposed originally in the American Clean Energy & Security Act 200952 and now pursued by the European Union53, suggests the possibility of “green-marginalization” of China.54 The heavy investments in clean energy manufacturing by China in the last two decades sought to avoid tariff barriers to its exports manufactured using...
fossil fuel based energy. Notwithstanding the motive, the means (clean energy manufacturing) has benefited the world with substantial scaling of low cost clean energy production.

However, China is also facilitating the expansion of fossil fuel use in countries under the Belt & Road Initiative (BRI), which may be counterproductive to addressing climate change. In 25 of the 65 countries under the BRI initiative, China is reportedly involved in 240 coal-fired power projects of about 250 GW capacity, roughly equal to current coal-based power generating capacity in the United States. It is important to note here that the key driver of the decision to use coal-based power by relatively poor BRI countries such as Bangladesh, Mongolia, and Vietnam is driven by cost rather than indifference to climate commitments. Though these countries are exposed to climate-related disasters, the concern that the costs of mitigating climate change by reducing emissions could slow down their economic catch-up overrides their climate concerns. This highlights the critical question of economic inequality between countries and the consequent need for financial assistance from richer to poorer countries to address climate change. Article 4 of the UN Framework Convention on Climate Change (UNFCCC) echoed Article 9 of the Paris Agreement by calling for financial assistance to poor countries to address climate change. Available evidence shows that climate finance grants to poor countries are far lower than the $100 billion promised by developed countries. This could be an opportunity for the United States and other developed countries to offer grants for clean energy to BRI countries under the climate finance mechanism. It is very unlikely that these countries would opt for loan-based coal projects offered by China under BRI if a cheaper clean energy alternative were made available.

Technology Innovation

The most recent report of the IPCC (Intergovernmental Panel on Climate Change) observes that the share of clean energy must increase to 52-62 percent of global primary energy supply by 2050 to limit global average temperature increase to 1.5°C. Industrialised countries have responded by increasing research and development (R&D) spending in clean energy technologies in the past few decades to stay ahead in the race. The United States, China, Japan, France, and Germany were the five leading countries for public spending on energy R&D in 2018. These five countries accounted for around 70 percent of all such spending worldwide. In 2018, China’s energy R&D budget grew most in absolute terms, with spending on clean energy and higher-performing fossil fuel technologies increasing the most. The U.S. budget for energy R&D also increased by more than 12 percent in 2018, with notable increases for solar energy, hydrogen, and alternative vehicle technologies. However, the share of China based start-ups in total venture capital value for early-stage energy technologies overtook the traditionally dominant United States, with Chinese companies receiving over half of the deal value. According to WIPO (World Intellectual Property Organisation), patents for clean energy technologies account for only 1 percent of overall patent applications, but these applications grew by 546 percent between 2002 and 2012. That growth has continued: in the period 2010 to 2019, Japan led the table for clean energy technologies with 9,374 applications, followed by the U.S. with 6,300 (see Chart 5). China was in fifth place with 1,659 patent applications, with Germany and South Korea taking third and fourth place respectively. However, China’s patent applications
increased substantially in the second half of the decade (2015-19) to 1,522 applications, pushing China to third place after Japan (3,114 applications) and the United States (2,247 applications). In the period 2013-17, China was the undisputed leader in applications for clean energy patent families with 45,472 applications (see Chart 6). Patent families offer greater potential for commercialization as patents cover more jurisdictions.

China’s emerging dominance in R&D investment in clean energy (and other sectors) need not be interpreted as a threat, especially when seen through the climate change lens. In investing in R&D, China is merely imitating the United States’ post-war state-led industrial policy that facilitated its growth as an industrial powerhouse. The state-led development of the United States, based on Hamiltonian economic philosophy, held that a big country needs big organizations to succeed and that the federal government in particular should collaborate with private enterprise to build infrastructure and finance scientific research. The only difference is that China is much larger and its pace of change much faster. However, climate change can benefit from rapid changes, especially when it comes to replacing fossil fuels with low carbon energy from wind and solar plants.

The claim that solar and wind electricity is cheaper than fossil fuel-based electricity and can therefore compete with traditional grid based power without state assistance is only partially true. At the system level, where dependable electricity must be supplied 24 hours of the day, all days of the year, and across all geographies, clean energy is not necessarily cheap as it requires back-up energy sources. For clean energy to realistically compete with traditional grids, battery technologies that store electricity for back-up must become much cheaper and more efficient, or intelligent networks that monitor and displace demand to match supply must be developed.

The UN Environment Programme (UNEP) calculates in its annual “emissions gap” report that, in the 2020s, the difference between what countries have pledged to the Paris Agreement and what is necessary to limit warming to 2°C degrees is 13 to 15 GT of carbon annually. To bridge the gap, all countries will need to reduce carbon emissions between 5 and 8 percent a year, something no country has ever achieved. No natural rate of technology substitution, even assuming the best possible cost projections, will be fast enough to meet the 2°C target by the end of the century.

The critical need for rapid technological innovation can benefit from the advantages that China has over the United States: its massive domestic market, its centralized power, and its willingness to employ state-sponsored industrial policy and government support. The expansion of scientific and technological capabilities in China has created a more multipolar global scientific landscape. In a multipolar scientific landscape, the big challenge is to institute traffic systems between China and the rest of the world to reduce transaction costs by ensuring that everyone plays by the same rules.

In the future, China and the United States may cooperate, reinforcing their strengths to address climate change much like the technological co-operation between the United States and USSR during the ColdWar. While there were of course long periods of mistrust and overt hostility between the United States and the
As clearly demonstrated by responses to COVID-19, sovereign efforts, while necessary, are not sufficient to address climate change, a complex planetary problem. Even the most self-interested nation cannot deny that a globally coordinated response to the pandemic led by the superpowers would have substantially reduced public health and economic costs for all nations. Responses to climate change are not likely to be any different if solidarity is forged on a global scale for common and sustainable life.

Endnotes

It is no great insight to suggest that the differences between China and the United States are approaching irreconcilable. In July, Beijing slammed Washington’s “gangster logic” after President Trump ordered the end of Hong Kong’s special economic status with the U.S.—itself a retaliation for the mainland’s new national security law. One month prior, China’s foreign ministry warned of “consequences”1 over a new American law to punish Chinese officials over the mass detention of minority Muslim Uighurs in western China. On social media, Chinese citizens have mocked Trump as a “joker” for proclaiming victory against COVID-19. There’s anger that the United States is taxing imports from the mainland, denying visas to Chinese researchers, and pursuing criminal prosecution against the vice president of tech titan Huawei, whose smartphone sales last year leapfrogged those of the iPhone. The perceived slights have turbocharged Chinese nationalism. “If you look carefully at the Huawei logo,” a cabbie in Shenzhen told me last summer, grinning from his rearview mirror, “it looks like a sliced-up apple.”

In the United States, meantime, as I write this there’s talk of an entry ban on every single member of the Chinese Communist Party, down to the apolitical, twentysomething opportunists who joined the organization purely for the networking. The president has tweeted of “a complete decoupling”2 from China, given its alleged theft of U.S. business secrets and market rules nudging aside foreign competition. A newly aggressive Beijing, as the bipartisan narrative goes, is bullying neighbors3 in the South China Sea, booting out American reporters4, and spreading misinformation5 in the States. The United States, in an unusual and risky move, has sent three aircraft carriers to patrol the waters in the South China Sea, prompting threats of “countermeasures.”6 It is hard to keep up.

Antagonism is rising in tandem with the two superpowers’ carbon emissions. As the Earth warms, the two largest greenhouse gas emitters are navigating toward a Cold War rather than toward a carbon-free 2050. As the Trump administration prepares to exit the Paris Agreement, U.S. climate collaboration with China at a federal level—diplomatic meetings, ministerial level communications—has largely shut down. Cooperation seems implausible. “What we’ve seen is a decoupling not just in business and trade but across the board,” Orville Schell, director of the Center on U.S.-China Relations at the Asia Society, told me. “Under Nixon and Kissinger, when they went in 1972 of course the common danger was the Soviet Union. Now the common danger is climate. Can we reorganize ourselves to confront that common enemy? I’m not so sure.”

A new mindset would cast climate friendly solutions less in terms of global benefit and future generations—always a policy challenge—and more in terms of national self-interest. “A space race in the climate space” is how Sarah Ladislaw, energy and environment scholar at CSIS, puts it. “Can China hawks [in Washington] have a climate strategy that’s globally relevant?” Adds Kelly Sims Gallagher9, energy and environment professor at Tufts: “There is plenty of room for healthy competition. I have wondered about the U.S. competitive spirit in the clean energy domain.”
A jog back to the actual superpower Space Race of the 1950s and 60s suggests that yes, Cold War enmity did yield technology breakthroughs, not only Lasik10 eye surgery and the development of memory foam11, but also step changes in energy including LED lighting12 and early solar cells.13 With the right policies and investments, the argument goes, Space Race 2.0 could accelerate the development of essential yet still immature green technologies. The International Energy Agency has declared that several such innovations are not yet on track14 to displace incumbent fossil solutions: energy from ocean waves, geothermal power, biofuels as alternatives to petroleum, and capturing carbon emissions from fossil fuel plants and storing the pollution underground forever.

Rhetorically, the idea of country v. country competition syncs up with rising economic nationalism around the world. Tariffs have come back into fashion, including those on solar modules15 and steel for wind turbines.16 Economic drawbridges are going up in many corners of the world, blocking the flow of capital17, business travelers18, researchers19, semiconductors20, and journalists.21 Still, in the decarbonization space, fruitful competition is not just about rivalry. It must also be about money. In the 1950s the Soviet launch of Sputnik 1 sent a shock wave through the American body politic and pushed Congress to open its wallet. It helped create NASA and funded what would become a $25 billion22 (that’s $110 billion today) moon project. The federal government put nearly $1 billion into hard sciences.23 “First in space means first, period,” President Lyndon Johnson declared. “Second in space is second in everything.” Likewise in Moscow, Soviet Premier Nikita Khrushchev crowed after his country put the first man into space in 1961 that the feat was the “greatest triumph of the immortal Lenin’s ideas.”

By 1966 NASA’s budget accounted for a whopping 4 percent of the federal budget.24 What would it cost today to green the entire U.S. electricity system? The consultancy Wood Mackenzie projects a price tag of $4.5 trillion25, spread out over as long as two decades. On a per-year basis, the math over 20 years comes out to …

“First in space means first, period,” President Lyndon Johnson declared. “Second in space is second in everything.” Likewise in Moscow, Soviet Premier Nikita Khrushchev crowed after his country put the first man into space in 1961 that the feat was the “greatest triumph of the immortal Lenin’s ideas.”

By 1966 NASA’s budget accounted for a whopping 4 percent of the federal budget.24 What would it cost today to green the entire U.S. electricity system? The consultancy Wood Mackenzie projects a price tag of $4.5 trillion25, spread out over as long as two decades. On a per-year basis, the math over 20 years comes out to …

It must also be about money.
technology, artificial intelligence, and materials science among other areas. One observer tags it Made in America 2025, a nod to Beijing’s Made in China 2025 tech blueprint.

While he’s not a member of Congress, Joe Biden, the Democratic nominee for President, has spoken of the “competition for the future against China.” His new climate plan is for the federal government to invest $2 trillion over four years.

Ladislaw adds that the Trump administration already has sought to reduce U.S. dependency on China and pursue homegrown breakthroughs in critical minerals, nuclear energy, semiconductors and the power grid. Investments in these areas by federal and state governments and American industry are already framed, to some degree, as “beating China.” As far as mobilizing private industry are already framed, to some degree, by federal and state governments and American and the power grid. Investments in these areas identifies five stimulus areas with high economic return, building efficiency retrofits, investments in education and training, natural capital investment, and clean energy research & development.

Specific sectors where American industries could “win” include electric vehicles, smart grids, ultra-high voltage electricity transmission, solar cells, wind turbine gearboxes, and advanced battery manufacturing, said Gallagher, who studies global energy supply chains at Tufts. In the last two decades, “we have ceded a lot of those markets to China without a fight. All of those are primarily manufactured in China now.” Gallagher offers this cautionary lesson of standing on the sidelines: during the Obama administration the MIT-based battery startup A123 received federal loan support. But as A123 tried to scale up manufacturing domestically, the domestic electric vehicle industry “didn’t have the policy support in the U.S.” Gallagher said. In the end, the firm went bankrupt and its assets were acquired by Chinese auto firm Wanxiang.

Today, Gallagher sees encouraging signs, notably in the nascent U.S. offshore wind sector. Up and down the Atlantic seaboard, states from Rhode Island to Virginia have committed to buy whopping amounts of electricity from ocean-based wind farms with towers as tall as the Eiffel Tower. Industry analysts see North America as potentially a next big offshore wind market, drawing supplier companies and high-paying jobs to coastal cities.

These programs have skeptics. Critics of large public investments in a single industry—green or not—deride the idea of policymakers rather than market forces “picking winners.” Industrial policy can be a risky and expensive bet. Whereas Asian and European economies over the years have plowed billions into targeted low-carbon sectors, industrial policy “has never been fashionable in the U.S.,” Gallagher said. Now, though, she suggests the widespread impetus to reshore industrial industries and reduce dependence on China can provide political cover.

As far as China, the aspiration to dominate key industries, including cleantech, is well documented. When I first moved to Shanghai in late 2006 to open my news organization’s first bureau there, the catch phrase I heard countless times at factories across China was “indigenous innovation,” a program of procurement rules and tax breaks to coax domestic science and tech breakthroughs. Its policy descendant, the “Made in China 2025” plan, names new energy vehicles, power equipment, and modern high-speed rail as pillar sectors for which 70 percent of the core content should be domestic. Beijing has declared intentions to become a global technology superpower by 2049. To be sure, this program has helped create the underling ill will with the United States, fueling accusations that Beijing is freezing out U.S. competition, extracting American technology, and violating free-trade pledges. It is clear, however, that China has joined the green race.

There is one additional way to channel superpower hostilities into planetary good: tariffs on goods with large carbon footprints. Already, trade walls have gone up around the world against Korean washing machines, Chinese solar panels, European commercial plants, and American soybeans. These import barriers have reinvigorated European commercial plans for a carbon border tax in its COVID-19 economic recovery plan. The idea is to tax products from climate laggards, including the United States. This levy, a top priority for European Commission head Ursula von der Leyen, is designed to tackle the pernicious problem of “free riding” that has long bedeviled
Arguing and Chewing Gum at the Same Time

To most observers, climate competition would likely have to occur in a context of global cooperation. Extreme decoupling, pitting the United States and China on opposite sides of an industrial iron curtain, could backfire, threatening the world’s two climate superpowers with the same fate. To the Tufts professor, it’s no accident that two early Chinese executives in the industry, noting the key role of ideas being shared across borders. To the Tufts professor, it’s no accident that two early Chinese executives in the industry, noting the key role of ideas being shared across borders. To the Tufts professor, it’s no accident that two early Chinese executives in the industry, noting the key role of ideas being shared across borders. To the Tufts professor, it’s no accident that two early Chinese executives in the industry, noting the key role of ideas being shared across borders.

Suntech a decade ago, Shi told me how Chinese firms in China contribute manufacturing R&D and capital to produce at scale. Beijing’s $586 billion stimulus during the 2008-09 financial crisis China has much better financial liquidity [due to the Chinese government’s economic stimulus], so this will support the realization of these projects.”

Finished Chinese panels find customers at home, as well as countries that have made commitments to purchase large amounts of renewable power, including Germany, Spain, Japan, Italy, the United Kingdom, Brazil, and India. Key states in the United States—notably California Nevada, Hawaii, and New Jersey—made similar pledges. By Gallagher’s reckoning, global trade in cleantech in the first decade of the 2000s grew by 259 percent, more than double the growth rate of total manufactured goods. “As we look back on the remarkable cost reductions in solar and wind,” she said, “we can attribute that largely to the globalization process.”

Which means it may be hard to simply extract China from any green supply chain. Jonas Nahm, who researches energy and industrial policy at the Johns Hopkins School of Advanced International Studies, has published research suggesting China’s key role in solar and wind talent and supply chains. The sequence to him looks something like this: The United States births large numbers of startups—often from universities. Then European countries, notably Germany, chip in production expertise and advanced factory equipment (visitors to Chinese factories have surely attended plant tours that invariably include a show-the-German-machines moment). Finally, firms in China contribute manufacturing R&D and capital to produce at scale. Beijing’s $586 billion stimulus during the 2008-09 financial crisis provided ample green financing. Provocatively, Nahm argues that countries engage in this global distribution of labor despite domestic policies to bring all the jobs home. It’s hard to compete with these market efficiencies.

“If we want to have an impact on carbon emissions in a short time frame, I don’t see a way to replicate China’s skills,” Nahm told me. To be sure, global trading partners have legitimate reasons to complain about Beijing’s industrial rules and contentious home-field economic advantages. “But if we [the United States and China] spend ten years arguing, we will lose Florida.”

The upshot: the world’s two climate superpowers may have to find ways to compete and yet collaborate at the same time. It would be challenging, for instance, for an American electric vehicle producer to gain market share without access to Chinese middle-class drivers. It’s worth noting that in many sectors, despite trade frictions and tariffs, China-centric global supply chains tend to be sticky. Of note: China is home to 90 percent of the world’s critical minerals, 50 percent of electric vehicles, and 60 percent of solar panels, by one estimate from by one estimate from New America.

Global Talks: The Essential Role of Climate Superpowers

Superpower collaboration also comes into play with global climate negotiations. Back in 2015, delegations from Beijing and Washington played key roles in sealing the Paris climate accord when they jointly announced emissions targets a year in advance. This laid the groundwork for other nations to follow suit.

The Trump administration, of course, plans to bail out of the Paris deal, and is loosening domestic rules on power plant and auto emissions. If the United States remains on the sidelines, many analysts argue it could take the pressure off China, providing space for Beijing to underperform as well. In fact, China’s COVID-19 stimulus efforts appear more brown than green to many observers; coal plant approvals are said to be on the rise.

1 Suntech went bankrupt in 2013, largely due to Chinese overproduction, which pushed prices down further.
Of course, Xi Jinping’s government could step into the void and assert global leadership on climate, as it has in global institutions including the World Health Organization. But those signs are less clear. Angel Hsu, an environmental studies researcher at Yale-NUS College in Singapore, has spent years interacting with Chinese climate researchers and negotiators. During the November 2016 UN climate summit in Morocco, Hsu was with the Chinese delegation when word came that Donald Trump, who’d called climate change a “hoax,” was elected. Would China step forward to lead? Hsu asked. “We are still a developing country behind the West, still waiting for the U.S. to show leadership.”

Elections can change things. For all the global angst about Washington appearing to ignore climate change, Hsu thinks a potential Biden presidency might offer a chance for Washington to show leadership. “If there’s a Biden presidency, Hsu says, those existing building blocks could help reassemble a broader climate relationship.

Is it realistic to imagine great power competition, and collaboration, on climate issues? For proponents, there may be some hope from history: In the 1930s, during the ugliest trade war of the 20th century, which would later drag the world into a Great Depression, the international community nevertheless found ways to work together on several environmental initiatives: to protect fauna and flora, limit fishing nets, and set standards for whaling and wildlife preservation. And even in the Cold War 1960s, the United States and Soviet Union were able to collaborate on the development of a polio vaccine. At least back then, the world’s existing and emerging superpowers found ways to argue and chew gum at the same time.

SCOTT TONG

is senior correspondent at Marketplace’s Sustainability desk, where his coverage focuses on energy, environment and the global economy. He is the author of the critically acclaimed *A Village with My Name: A Family History of China’s Opening* (University of Chicago Press). Tong is senior correspondent at Marketplace's *Marketplace* and was previously a correspondent at the PBS NewsHour, where he reported from more than a dozen countries, including China. He covered the 2008 Beijing Olympics, the 2011 tsunami in Japan, and 2011 famine in the Horn of Africa. From 2006-2010, Tong served as bureau chief in Shanghai, where he reported a special series on the economics of one child. He covered the 2008 Beijing Olympics, the global financial crisis in Asia, China’s exploding consumer market, product safety and slave labor scandals, and controversial baby-selling in China’s international adoption program. Prior to joining Marketplace, Tong worked as a producer and reporter for the PBS NewsHour, where he reported from Iraq in 2003. He served as a Knight-Wallace journalism fellow at the University of Michigan in 2013-14. He lives in Arlington, Virginia with his wife and three children.

Endnotes

The same deep tension lies at the heart of the fight against COVID-19 and climate change, particularly in democracies. In each case, the measures necessary to save everyone entail costs that widen existing inequalities. At a time when the United States and other democracies need solidarity, the resulting civic turmoil and division are feeding (and being fed by) populism.

In the United States, the disastrous response to the pandemic has exacerbated class, racial, ethnic, and age divisions. Shutting down 60 percent of the economy for months, and then reopening it in an uneven state-by-state fashion, has pitted those who can work remotely and want to stay safe against those who cannot and thus regard public-health measures as tantamount to economic suicide.

The 40 percent of the economy that has remained open all along is staffed by millions of “essential workers,” who disproportionately comprise low-paid black and brown Americans. They are up to five times more likely than whites to be hospitalized for COVID-19, and—with more than 37,000 black Americans having now died from the disease—more than twice as likely to die. Intersecting these divides is the coronavirus’s differential impact on younger and older Americans, although jokes about COVID-19 being the “boomer remover” have faded as every age group suffers deaths and serious health consequences.

Beyond the health effects, young people are paying a higher social, educational, and economic price for the shutdown than older Americans. The unemployment rate among those aged under 34 is in the double digits, while McKinsey & Company estimates that the ongoing disruption to schooling will cost $110 billion in lost annual earnings for today’s students. And these are just the consequences that can be measured.
None of this had to happen. America’s poor COVID-19 response is a failure of leadership, not governance. Other democracies—including countries as geographically diverse and culturally distinct as South Korea, New Zealand, Germany, and Ghana—have kept infection rates under control so far. And although communist China is widely viewed as having responded better to the pandemic than the United States,6 democratic Taiwan has done an even better job—and without suppressing information about the spread of the virus.

The fault lies with a particular kind of populist leadership that is abysmally evident in President Donald Trump’s administration but also plagues other countries, from Poland under the ruling Law and Justice (PiS) party to the Philippines under President Rodrigo Duterte. Such leaders approach problems by blaming others, aiming to strengthen their support within a particular subgroup by fostering division.

That type of leadership undermines trust,6 and makes it less likely that people will have sufficient confidence in authority and expertise to follow public-health guidelines. It also eschews and destroys any idea of shared sacrifice.

Therein lies the similarity between the responses to COVID-19 and climate change: faced with outsize and unexpected burdens and costs, everyone must commit to give up or pay something.

To be sure, solidarity is much harder to sustain when sacrifice is shared unequally.

As with the current pandemic, the effects and costs of climate change are unevenly distributed within and across populations. Those who have benefited from the generation of wealth in the industrial age will not be paying anywhere near a proportionate share of the legacy costs in the twenty-first century.

But embracing solidarity offers a potential path forward for all democracies beset with racial and ethnic tensions, either among native populations or between self-described natives and immigrants. In his forthcoming book on “race, solidarity, and the future of America,” U.S. Navy veteran and former White House Fellow Theodore Johnson defines national solidarity as “the civic version of the Golden Rule,” requiring that each of us “actively champion the right to equality and liberty” for ourselves and our fellow citizens.

Johnson further argues that African-Americans and other minority communities have deep experience of solidarity. Michelle Alexander, author of The New Jim Crow, has similarly called for a “politics of deep solidarity rooted in love.”7

Therein lies the similarity between the responses to COVID-19 and climate change: faced with outsize and unexpected burdens and costs, everyone must commit to give up or pay something.
Solidarity is both golden and necessary. The United States, along with Japan, China, Russia, and much of Europe, is struggling with a demographic imbalance, having too few young people to support a tsunami of retirees. But the U.S. has a comparative advantage, because both immigration and a more diverse young population are contributing to economic growth.\(^5\)

Whites are already no longer a majority among Americans under 18. By 2027, they will cease to be a majority among those under 30, and by 2045 they will no longer be a majority at all.\(^6\) If America can make closing the racial equity gap its national mission, such that economic, educational, and social disparities simply track America’s demography rather than being disproportionately concentrated in black and brown communities, it will open the door to huge and lasting innovation.

Throughout its history, American democracy has innovated to adjust to technological change, wars, pandemics, and other shocks. Its persistence shows that a society governed by liberal principles, the rule of law, and elected representatives can exist and thrive for centuries. As the U.S. approaches the 250th anniversary of its founding, Americans need to embrace the country’s diversity as a source of strength and solidarity that will allow it to meet collective challenges at home and abroad.

The politics of populism is a politics of division, defining “the people” whom populist leaders claim to represent against others—foreigners, elitists, cosmopolitans, globalists, urbanites, or people of a different color, race, or creed. By contrast, the politics of solidarity is one of unity, reminding us of the common threat to the planet that imperils us all. By choosing a response that unites equity and existentialism, we can save both democracy and our world.

THE HONORABLE SHARON E. BURKE

directs the Resource Security group at New America, which looks at the intersection of human security, prosperity, and natural resources. She also serves on New America’s leadership team and is an advisor to the Future of War project. Before joining New America, Burke served in the Obama administration as the assistant secretary of defense for operational energy. Prior to her service at DoD, Burke held a number of senior U.S. government positions at the State Department and Pentagon. Outside of government, Burke has worked for several non-profit organizations, including as a vice president and senior fellow at the Center for a New American Security. Burke publishes widely and is on a number of boards and advisory groups, including for the National Renewable Energy Laboratory and the National Science Foundation. She attended Williams College and Columbia University.

ANNE-MARIE SLAUGHTER is the CEO of New America. She is also the Bert G. Kerstetter ’66 University Professor Emerita of Politics and International Affairs at Princeton University. From 2009–2011, she served as director of policy planning for the United States Department of State. Prior to her government service, Dr. Slaughter was the Dean of Princeton University’s School of Public and International Affairs (formerly the Woodrow Wilson School) and the J. Sinclair Armstrong Professor of International, Foreign, and Comparative Law at Harvard Law School. Dr. Slaughter is a contributing editor to the Financial Times and writes a bimonthly column for Project Syndicate. She received a B.A. from Princeton, an M.Phil and D.Phil in international relations from Oxford, where she was a Daniel M. Sachs Scholar, and a J.D. from Harvard.
What Foreign Policy Needs to do to Address Climate Change in the Developing World

Vanessa Nakate

Climate change is the greatest threat facing humanity right now. Though we will all feel its impacts, not all of us will be affected equally, making it not just an important foreign policy issue but also an important issue with regard to equity and democracy. For instance, while some people have yet to experience any climate impacts in their own lives, others have already seen their livelihoods destroyed by climate change-driven floods, hurricanes, and droughts. In my country, Uganda, I have seen people, especially in rural communities, struggle with food and water scarcity—yet we emit less carbon dioxide per capita than nearly every other country. This clearly shows the injustices that come with climate change and demonstrates that the foreign policy community needs to act to protect the developing world and the most vulnerable within it.

There are three key steps to ensuring that climate action is democratic and equitable, and thus more effective. First, the international community needs to provide more democratic development finance to address the needs of communities struggling with air and water pollution and support developing countries with mitigation and adaptation efforts. Second, ecocide needs to be recognized under international law—this is a crucial step towards global environmental justice. Third, we need to bring more voices into the international climate debate, particularly those who suffer the most from climate impacts, namely frontline communities and women.

Address Ecocide and Environmental Crimes in International Law

The term “ecocide” refers to human activity that violates the principles of environmental justice, for example causing extensive damage to—or destroying—ecosystems, or harming the health and well-being of a species (including humans). While we have many international agreements and laws meant to protect the environment and...
climate, none of them explicitly address ecocide. Ecocide needs to be recognized under international law as a crime.

In fact, justice systems are becoming the new battleground between activists and bad climate actors. The fossil fuel industry is lawyering up. To date, nine U.S. cities and counties have sued the fossil fuel industry for climate damages. California fishermen are going after oil companies for their role in warming the Pacific Ocean, a process that soaks the Dungeness crabs they harvest with a dangerous neurotoxin. The Dutch Supreme Court ruled in the Urgenda climate case that the Dutch government is obligated to reduce emissions in line with its human rights obligations. In the Juliana vs. U.S., a group of young Americans have filed suit against their government, “asserting that, through the government’s affirmative actions that cause climate change, it has violated the youngest generation’s constitutional rights to life, liberty, and property, as well as failed to protect essential public trust resources.”

Governments and corporations need to be held responsible for violating human rights. Foreign policymakers should urge the fulfilment of environmental legal obligations to combat climate change. This will help to reduce potential environmental risks in the most affected communities.

Listen, then Lead

Last but not least, we need to recognize all voices in the international arena, particularly those who most often face the consequences of climate change-driven extreme weather. One way to improve the situation is to include more women in conversations on climate action. This means providing equal space and resources for women and men to participate in climate change decision-making and action at all levels and on all platforms. Decision-making needs to include diverse voices from developing communities and Indigenous communities. These people suffer the most and they deserve platforms to demand justice and inform responses. There is no climate justice without respecting diversity in the climate movement.

We cannot address climate change without democracy and equity. We cannot. We need leaders who will take swift and equitable climate action. We need leaders who will enforce laws to protect people and the planet.

Women’s roles as primary caregivers and providers of fuel and food make them more vulnerable to drought and floods. The authors of a Georgetown Institute for Women, Peace and Security report write, “Around the world, women tend to be marginalized from political and economic power and have limited access to financial and material resources—particularly in conflict-affected, post-conflict, or less economically developed settings—which can exacerbate their vulnerability to the impacts of climate change.”

There’s a simple illustration of this from Uganda: one of the ways to survive a flood is to climb a tree, and yet women in some areas are strictly not allowed to climb trees, because doing so would taint their dignity according to cultural values.

One way to improve the situation is to include more women in conversations on climate action. This means providing equal space and resources for women and men to participate in climate change decision-making and action at all levels and on all platforms. Decision-making needs to include diverse voices from developing communities and Indigenous communities. These people suffer the most and they deserve platforms to demand justice and inform responses. There is no climate justice without respecting diversity in the climate movement.

We cannot address climate change without democracy and equity. We cannot. We need leaders who will take swift and equitable climate action. We need leaders who will enforce laws to protect people and the planet.

Endnotes

5 Our Children’s Trust. (n.d.) Juliana v. United States Youth Climate Lawsuit: Our Children’s Trust. https://www.ourchildrenstrust.org/juliana-vs-

Without Centering Race, Identity, and Indigeneity, Climate Responses Miss the Mark

Introduction

A press-conference photo from the 2020 World Economic Forum in Davos, Switzerland, excluded Vanessa Nakate, a young Ugandan climate activist who founded the Rise Up Movement. That photo only showed her four White colleagues.1 Nakate’s exclusion from this picture powerfully illustrates the epistemic silencing of non-White and Indigenous peoples and communities in the most eminent discussions of climate change. This example shows how climate discussions are dominated by Western, often White voices and interests.2

Take another example. It was only after months of climate change aggravated bushfires raging across Australia that fire services began to consider 50,000-year-old Aboriginal fire-management practices.3 Those practices involve a close, custodial connection with land, wildlife, and seasons.4 Furthermore, it was almost three months after those fires had been extinguished when the Australian Government ultimately concluded that it ought to have better incorporated Indigenous knowledge into the country’s environmental decision-making.5

While the bushfires in Australia and elsewhere, including in California, received intense media attention, very little attention is paid to the more extreme, long-term, and life-threatening consequences of climate change, such as drought, water scarcity, and food shortages in Africa, South Asia, Latin America, and elsewhere.6 Like Nakate’s excision from the climate activist photo and Australia’s initial oversight of Indigenous knowledge,7 climate change issues involving poor countries remain largely underrepresented in both research and global governance.8

It is time we put an end to the epistemic silences in predominant climate change discourses, which erase and ignore the agency, knowledge, and experiences of non-Western, non-White peoples, and Indigenous communities. Effectively responding to the immense challenges posed by climate change requires a climate justice approach that centers the voices and experience of those most vulnerable. Foregrounding these voices and experiences, including those relating to traditional ecological knowledge, will serve not only to better understand and address the challenges raised by climate change, but also to end the “cognitive annihilation” of Indigenous heritages and world-views.9 It is simply not enough to focus only on the economic and scientific issues raised by climate change, without paying attention to those relating to race, identity, and indigeneity.10

To make that claim, this essay examines three major approaches to thinking about climate change: sustainable development; social justice cosmopolitanism; and post-development.11 A comparative analysis reveals significant variation in the ways these approaches exclude the viewpoints of vulnerable communities. Furthermore, these approaches remain largely isolated from one another, which makes coordinating effective climate-change action an even greater challenge.

In contrast, climate justice theorists, practitioners, and activists acknowledge race, gender, identity, and indigeneity,12 accordingly, they address the limits of development and market orthodoxy in the aforementioned approaches, and also highlight the “issues and concerns that arise from the intersection of climate change with race, poverty, and preexisting environmental risks.”13 These aspects of climate justice are critical because they make visible the most urgent impacts of climate change that have so far been peripheral in policy discussions that are dominated by scientific and economic considerations.

Climate justice is by no means a settled and uncontested concept,14 but more than any of the aforementioned approaches, it opens up climate change discussions to a broader set of considerations and should be embraced alongside the predominant economic and scientific approaches that currently dominate discussions on climate change.

Sustainable Development and its Blind Spots

One lens through which to think about climate change is economics. For example, a recent economic analysis of climate change argues that markets, if left alone, can produce climate-saving innovations, enabling never-ending growth.15 Sustainable development, by contrast, provides an alternative starting point for a more sustainable and inclusive global economy.

The concept of sustainable development—that high growth rates are a key driver of development—began to take shape after the 1972 U.N. Conference on the Human Environment in Stockholm, which recommended preservation measures to offset environmental degradation caused by resource extraction and economic exploitation. The term “sustainable development”
first appeared in a 1980 report by the International Union for the Conversation of Nature. In 1987, the U.N. World Commission on Development and the Environment presented the Brundtland Report, which imagined sustainable development as balancing economic development with environmental protection. This approach changed when the 1992 Rio Declaration on Social Development described sustainable development as a balance of three pillars: environmental protection, economic development, and social development (which integrates social, economic, and cultural rights, including equality and non-discrimination). Later, the 2012 U.N. Conference on Sustainable Development (i.e., the Rio+20 Conference) proposed a more abstract, pro-growth notion of sustainable development that identified poverty in developing countries as primarily responsible for environmental degradation. The overriding commitment to economic growth that appeared in Rio’s “Green Economy” proposals were dubbed as “eco-efficient” approaches to solve environmental issues.

However, very much like the leading scientific studies on climate change, sustainable development alone does not adequately capture the entire breadth of the implications raised by climate change. As a framework, sustainable development comes with significant blind spots. In particular, it pays insufficient attention to historical and structural foundations of poverty. Even with some recognition of both the biophysical limits to growth and the role of cultural and spiritual heritages in reinforcing economic interests and survival imperatives, sustainable development remains an overtly growth-centric “ruling rationality,” invariably justifying the types of environmental degradation associated with climate change.

The Cracks in Social Justice Cosmopolitanism

Unlike sustainable development, social justice cosmopolitanism evaluates climate change action while weighing the historical and structural foundations of poverty. This includes the impact of the high levels of emissions from developed economies and middle-income emerging market economies that disproportionately impact the lowest carbon dioxide-emitting countries of the Global South. For proponents of social justice cosmopolitanism, who view individuals as the units of moral concern, global institutional arrangements exacerbate socioeconomic inequalities in ways that are both foreseeable and avoidable. As a result, these cosmopolitans believe that developed countries have a moral imperative to stop poverty and ecological harms, including those caused by climate change.

To achieve this goal, cosmopolitans propose measures such as cooperative redistribution. For example, Thomas Pogge has proposed a government sponsored Ecological Impact Fund that would incentivize innovators of ecologically beneficial inventions by paying them on the condition that they agree to give up the underlying intellectual property protection of their innovation so that it can be used in countries that would otherwise be unable to afford such innovation.

For cosmopolitans, identity issues, including those based on ethnicity, culture, or race, are irrelevant. Yet, the impact of climate change disproportionately falls on people who have long been marginalized on the basis of their identity. It is insufficient to merely focus on the material resources the poor lack without focusing “on relations and structures of social and political inequality” that reinforce poor communities’ powerlessness and subordination.

Beyond Post-Development?

Unlike sustainable development and social justice cosmopolitanism, a post-development approach provides a framework for discussing climate change that emphasizes how contemporary development paradigms are designed by elites and the global institutions they control, “from above,” rather than “from below.” The claim here is that ideas about development are not designed through bottom-up, grassroots processes that take into account the interest of ordinary people and communities.

A post-development concept argues that development frameworks such as free markets also presuppose a singular “global modernity” rooted in a Eurocentric social order. On the other hand, “coloniality” includes “those subaltern knowledges and cultural practices worldwide that modernity itself [has] shunned, suppressed[,] made invisible and disqualified.” Post-development seeks to overcome this modernity/coloniality paradigm that defines contemporary understandings of development by taking seriously local histories and politics, not in a romantic or unrealistic manner, but rather as foundations for alternative and dissenting imaginations. Such a view is based on acknowledging the role of social movements to “more directly and simultaneously engage with imperial globality and global coloniality.”

Post-development therefore provides an approach that counters universalizing solutions to climate justice concerns by foregrounding non-dominant perspectives that cannot be reduced to the modernity/coloniality paradigm, even while acknowledging its overbearing influence.

For example, Balakrishnan Rajagopal reminds us that although human rights discourse is part of this hegemonic modernity/coloniality paradigm, we should not dismiss the value of human rights in our search for radical democratic alternatives, particularly because rights help to envision what he refers to as “counter-hegemonic cognitive frames.” Rajagopal’s vision of a counter-hegemonic international law includes “coalitions of smaller states and social movements, forming tactical alliances with larger states in particular negotiations, while increasing the prominence of sub-state actors in international law more broadly.” In this respect, post-development complements a climate justice framework that also includes attention to issues of identity, including those relating to race, identity, gender, and indigeneity.

Hitting the Mark with Climate Justice

Implementing a climate justice approach to understanding and addressing the impacts of climate change would complement and strengthen the aforementioned predominant approaches. For one, this is because climate justice’s interdisciplinarity avoids the blind spots of economic frameworks oriented towards growth and...
redistribution. Additionally, climate justice responds to an urgent global threat by its razor-sharp focus on the disproportionate burden of climate borne by people of color and Indigenous people, as well as related issues such as access to safe, affordable, and nutritional food, access to parks and open space, but also equity in disaster preparation and response. This essay primarily focuses on those elements that directly relate to climate justice.

Climate justice was embraced in the 2002 Bali Principles of Climate Justice, which were formulated by a broad coalition of civil society groups. One of their primary goals was to put a human face to issues related to climate change by borrowing from a human rights and environmental justice perspective.

The many roots of the climate justice movement can be traced to environmental justice movements including those that sought to defeat environmental racism. The goal of environmental justice is to address:

- the ethical and human rights dimensions of climate change, the disproportionate burden of legacy pollution (chemicals that were used or produced by industry that remain in the environment for a long time after they were used and cause harm), the unsustainable rise in energy costs for low income families, and the impacts of energy extraction, refining, and manufacturing on vulnerable communities.

For example, in North America, environmental justice actors challenged environmental policies that allowed disproportionate and persistent exposure of environmental harms to people of color.

Environmental justice therefore emphasizes the centrality of grassroots engagement, particularly by people of color, youth, and women, as exemplified in the work of leaders like Nakate, whose combined influence can counter a dismissive culture of inaction on the causes and impacts of climate by governments and other actors. Also referred to as “environmentalism of the poor,” environmental justice recognizes those disproportionately impacted by climate change not merely as victims or objects of study, but also as producers of knowledge whose agency in exposing and countering environmental injustices is crucial to understanding the threat that climate change poses.

Indeed, as Maxine Burkett reminds us, the contemporary global climate movement does not simply mirror the concerns of environmental justice. Rather, in Burkett’s words, it “seeks to correct a deeper harm that disparately dismantles livelihoods as a result of a changing climate, and to introduce a different kind of political economy that, at the very least, abandons the use of fossil fuels as a driver of our economy.” Indigenous peoples and local communities adversely impacted by climate change often seek alliances with sympathetic actors including rich non-governmental organizations based in rich countries as a way of amplifying the voices and concerns.

Recognizing climate change as a problem of global injustice, rather than solely a problem of economics, of science, or merely of inequality, provides clarity on the need “for a fundamental shift in our political and economic systems and thinking.” While many of the existing approaches to environmentalism have focused on sustainability, climate justice emphasizes that “nature is more than an economic resource and the natural environment is of more than utilitarian value.”

Importantly, climate justice embraces a notion of intergenerational justice, which indicates how “the persistence of greenhouse gases is a past, it is insufficient to merely focus on the material resources the poor lack without focusing on relations and structures of social and political inequality” that reinforce poor communities’ powerlessness and subordination.
Climate justice proponents consider that climate change will adversely impact not only “the most impoverished nations and peoples in the international community, who will be least able to address it,” but the emerging middle-income nations continuing to pursue economic growth in hopes of joining the industrialized world as well.49

Solutions to climate change pegged on contemporary notions such as sustainable development are problematic because global capitalism “deploys race and racism as techniques of exclusion and control, creating expendable geographic locations (sacrifice zones) and expendable people.”50 Taking these limits of sustainable development, Carmen González argues in favor of a race-conscious approach to create solidarity between diverse social movements and climate-vulnerable states; this approach rejects and counters extractive economic policies, economic inequality, and racism.51

Since the dominant approaches to climate change arise from within a State-centric system with a long history of excluding, suppressing, and erasing Indigenous experiences and perspectives, climate justice’s inclusivity suggests a more fundamental critique of the exclusionary nature of State-centric responses to climate change that foreground scientific and economic considerations, while ignoring or downplaying the experiences and voices of Indigenous peoples, people of color, and women. This is particularly the case in settler colonial states, including those in the Americas, in the South Pacific, and in places like South Africa, where these groups are not merely demanding equality, but self-determination and autonomy for themselves free of the neo-liberal paradigms predicated on coloniality and modernity—both of which are embraced by our contemporary State-centric system.49 Perhaps most significantly, according to Upenra Baxi, the climate justice approach provides an opportunity and an openness to see and address the suffering of the “others” who are already burdened disproportionately by the impacts of climate change and who are often rendered invisible by State-centric approaches.52

Yet, as noted in the introduction, we must recognize that climate justice is a contested idea.43 For example, as Susannah Fisher notes, the United Nations Framework Convention on Climate Change’s concept of common but differentiated responsibility focuses on “the resilience of existing social systems rather than of the transformation to new more equal societies.”53 Further, while the Paris Agreement referred to climate justice for the first time, it “does not involve or provide a basis for any liability or compensation.”54 In fact, one climate justice litigation study that centered this reparation approach and took the Paris Agreement as a point of departure made no reference to gender or other non-State identities.55 In addition, unlike post-development, climate justice advocates do not always engage with and/or critique underpinning structural ideologies, such as the neoliberalism or Eurocentric foundations of globalization, including its paradigm of sustainable development.

Conclusion

I still vividly recall the brochures, complete with absolutely horrifying pictures showing environmental destruction, including oil spills and gas flaring from the Movement for the Survival of the Ogoni People (MOSOP), sent to the Washington DC-based International Human Rights Law Group (IHRLG). My job that fateful summer in 1995 was to assist leading international human rights lawyer Gay McDougall, then the Executive Director of the IHRLG, to lobby to save the life of MOSOP’s founder and leader, Ken Saro-Wiwa, from Nigerian General Sani Abacha’s ruthless repression of MOSOP’s protests against fossil fuel corporations like Shell for devastating the region’s environment. The struggle for environmental justice of the Indigenous Ogoni community, including the heartbreaking execution of their leader Ken Saro-Wiwa in November 1995 by the military dictatorship of General Abacha, is one of over 3,000 environmental conflicts around the world captured in the Environmental Justice Atlas.56 This Atlas definitively shows that mining and industrial extraction of fossil fuels are a leading source of mobilizations and protests, especially by Indigenous peoples. Needless to say, these extractive activities are a leading cause of climate change.

From the foregoing perspective, climate justice offers a compelling framework for centering the experiences and perspectives of vulnerable communities upstaged by the often predominantly White voices and concerns in discussions and debates on climate change. Such exclusion is troubling in many respects, but especially so given the growing consensus among policy experts that the brunt of climate change will be shouldered overwhelmingly by people-of-color and Indigenous peoples, especially those within States that are already prone to economic insecurity and conflict57, and which contribute the least to global climate change.58 A devastating instance of this disproportionate exposure is that of small island developing states, like the Maldives, Tuvalu, and Kiribati, many of which will lose all of their territory to rising sea levels before the end of the century.59 Centering a response to climate change in a climate justice approach ensures that issues of race, gender, identity, and indigeneity come to the fore in ways which reflect the most dire needs.60

We have unfortunately seen how the United States and many European States pushed back against the adoption of a recent United Nations Human Rights Council Resolution to establish an independent commission of inquiry that would uncover the facts and circumstances related to systemic police violence in the United States and elsewhere following the murder of George Floyd.61 The United States and European countries have a long history of limiting scrutiny of their record of racial inequality, racial injustice, and ongoing marginalization of women and Indigenous peoples. By spotlighting issues of identity, gender, race, and indigeneity, a climate justice approach can coalesce into a movement that both addresses climate change and pushes back against the insidious denialism of the significance.
of these issues, particularly in the United States and in Europe.

Ultimately, while climate justice does have its blind spots, just as other approaches, it opens up attention to the real concerns of Black, Brown, and Indigenous peoples who often have little power in defining the terms through which discussions of climate change are discussed and debated. This attention can only serve to strengthen our collective responses.

JAMES T. GATHII is a professor of law and the Wing-Tat Lee Chair in International Law at Loyola University Chicago School of Law. He sits on the board of editors of the American Journal of International Law, the Journal of African Law and the Journal of International Trade Law and Policy. In June 2020, he was the Groots Lecturer at the 2020 Annual Meeting of the American Society of International Law. He is a founding member of the Third World Approaches to International Law (TWAIL) Network, the Afronomicslaw.org blog on international economic issues as they relate to Africa and the Global South, and the African Journal of International Economic Law. He sits on the board of the International Human Rights, Third World and Indigenous Legal Consciousness Network, as well as the Executive Committee of the International Environmental Law Initiative.

2 Id.

4 Leah Arrindell, Australia’s indigenous people have a solution for the country’s bushfires: And it’s been around for 50,000 years, CNN (Jan. 12, 2020), https://www.cnn.com/2020/01/12/australia-australian-bushfires-bush-trees-native/index.html.

8 See also Patrick Huntjens & Ting Zhang, The Persistence of Poverty as Long-term Symptoms of Climate Change, 41 U. MIAMI INTER-AM. L. REV . 129, 139-48 (2018) (discussing how seasonal droughts and famines are substantially driven by global institutional arrangements that are designed by the more powerful governments for the benefit of their most powerful industries, corporations and citizens.). Pegge describes ecological damage and the persistence of poverty as long-term symptoms of
high-stakes adversarial systems which view money as the universal reward; such adversarial systems lead to ‘self-aggrandizing regulatory capture’; a collective action problem arising “when powerful players find it in their interest to influence the rules and their application in their own favor, in ways that then produce . . . ecological harms and harms to the world’s poor.” Id at 539-36. See also Pogge, Are We Violating the Human Rights of the World’s Poor?, 14 Yale Hum. Rts. & Dev. L.J., 1-33 (2001) [hereinafter Are We Violating Human Rights?] (describing developed countries’ responsibility in designing and imposing harmful supernatural institutional arrangements, “We have a duty not to collaborate in the design or imposition of social institutions that foreseeably cause a human rights deficit that is reasonably avoidable through better institutions – unless we fully compensate for our fail share of the avoidable human rights deficit.”)

26 Id at 640. For Pogge’s full proposal for an Ecological Impact Fund (EIF), see id at 539-42 (“The creation of the EIF would serve as a model for . . . green products from push funding, where governments and grant-making organizations decide who should receive funds, toward pull funding, where any innovator who believes she can profit has an incentive to pursue and then to promote a new product. . . . By closely aligning private rewards with profit has an incentive to pursue and then to promote a new product. . . .”)

27 See, e.g., Simon Carey, International Distributive Justice, 49 POL. STUDY 974, 977 (2001) (“As Pogge . . . points out, on all accounts of justice no reference is made to some- one’s ethnic identity or their status or their sex. These are all deemed to be irrelevant. But then this is, puzzling: why are these morally irrelevant but someone’s membership of a nation or state relevant.”). See gener- 49 POL. STUDY 974, 977 (2001) (“As Pogge . . . points out, on all accounts of justice no reference is made to some- one’s ethnic identity or their status or their sex. These are all deemed to be irrelevant. But then this is, puzzling: why are these morally irrelevant but someone’s membership of a nation or state relevant.”). See gener- 49 POL. STUDY 974, 977 (2001) (“As Pogge . . . points out, on all accounts of justice no reference is made to some- one’s ethnic identity or their status or their sex. These are all deemed to be irrelevant. But then this is, puzzling: why are these morally irrelevant but someone’s membership of a nation or state relevant.”). See gener- al Thomas Pierret Caine, and Arno G dietzler trans., 2020 (proposing progressive income taxation at the world level to fulfii social and economic rights and eliminate borders, without emphasizing margin- alized populations). John D. Larralde et al., The Miserly of International, 11 ETHICAL ISSUES IN POVERTY ALLEVIATION 225, 239 (2018) (comparing the earnings of human rights law and differentiating between human rights discourse and its incorporation into elite-dominated global-governance institutions).

31 Id at 761 (noting that “the course available for countervailing-hegemonic international law is not entirely outside the hegemonic framework that already exists”).

32 Although environmental justice discourse has historical links to the United States, one finds that the underlying environmental justice issues have long existed in the Glob- al South. See, e.g., Juan Martinez-Alier et al., Towards a Global Environmental Justice Movement? 43 J. PLAIS- ANT STUD. 731-55 (2016) (comparing global environmental justice movements).

33 Karin Mickelson, Beyond a Politics of the Possible: South- ern Africa’s Environmental Movements, 12 AM. J. COMPAR. L. 411, 412 (2009) [hereinafter Beyond a Politics of the Possible].

40 Id.

41 Jalonna Lyon-White-Newman, A Policy Approach Toward Climate Justice, 46 BLACK SCHOLAR 12, 12 (2006). See also Burkett, Just Solutions, supra note 14, at 179 (describing the disproportionate impact of negative effects of climate change and economic hardship on vulnerable communities). However, environmental justice has gone beyond its initial focus on disproportionate pol- lution burden to encompass additional issues, like food and disaster justice. Gonzalez, supra note 35, at 154-56.

42 Shreen K. Lawis, An Interview with Dr. Robert D. But- til, 46 BLACK SCHOLAR 10 (4 2016).

43 Climate Disobediance, supra note 39, at 17

44 Id.

45 Martinez-Alier et al. supra note 37, at 736-37.

46 Mickelson, Beyond a Politics of the Possible, supra note 38, at 413.

48 Bax, Towards a Theory?, supra note 24, at 19.

49 Gordon, Climate Changes and the Poorest Nations: Further Reflections on Global Inequality, Presentation at the University of Colorado Law School’s Conference: The Climate of Environmental Justice: Taking Stock (Mar. 17, 2001). See also Gordon, Spectrum of Climate Change, supra note 13 at 135, Gupta, supra note 13, Burkett, A Justice Paradox: On Climate Change, Small Island Developing States, and the Quest for an Effective Legal Remedy, 35 U. HAW. L. REV. 633, 634 (2013) [hereinafter A Justice Paradox] (identifying a “justice paradox” insurer as “the current international legal regime forecloses any reasonable attempts at a just remedy for the victims of climate change who are the most vulnerable and the least responsible”).

50 Gonzalez, Racial Capitalism, Climate Change, and Climate Displacement, ORATI SOCIO-Legal SERIES 5, 1 (forthcoming 2021) (“Race is thus not simply a form of bias or discrimination, but an integral part of a world system that subjects growing segments of the world’s population to網頁 poverty and premature death”).

51 Id at 26-7. See also Usha Natarajan, Environmental Justice in the Global South, in THE CAMBRIDGE HANDBOOK OF ENVIRONMENTAL, JUSTICE AND SUSTAINABLE DEVELOPMENT (Carman G Gonzalez et al., eds., forthcoming Oct. 2020) (opening action at 16-17) (We have editors’ approval for a third World Approaches to International Law (TWAIL) perspective that the “environ- mental justice framework highlights communities of color and historic connections between dispossessed communities within rich and poor states” and also “allows for a reconfigured understanding of where the Global South really is: a transnational and evolving place where solidar- ity can be built between lower class and caste communi- ties in poor and rich states, Indigenous communities, and poor peoples of color.” This essay presents a TWAIL perspective on climate change.

54 Bax, Some Newly Emergent Geographies of Injustice: Boundaries and Borders in International Law, 23 IND. J. GLOBAL LEGAL STUD. 15, 17 (2016). See also Bax, Towards a Theory?, supra note 24, at 12, 17.

55 Indeed as Ilumma argues, there is a “lack of coherence among the various environmental justice constructs . . . [which turn] permutate the atmosphere of endless chaotic theorisation with no establishment of a consensus.” Ikueml Ikuem. equity, environmen- tal justice, and sustainability: incompete approaches to climate change politics, 13 GLOB. ENVTL. CHANGE 199, 203 (2003).

57 Paris Agreement to the United Nations Framework Con- vention on Climate Change, Dec. 12, 2015 art. 8 ¶ 52, T.L.A.S. No. 16-1104.

61 See Burkett, A Justice Paradox, supra note 49.

62 Id at 659.
In February 2017, Bill Gates alerted world leaders at the Munich Security Conference (MSC) that “we ignore the link between health security and international security at our peril.”¹

It did not take long for this warning to become a terrible reality—as of this writing (August 2020), 750,000 people have perished from COVID-19, and that number continues to rise. That is roughly ten times the number of people that died in armed conflicts in 2019.²

The European Union (EU) was among the regions hit hardest in the early stages of the pandemic. More than 90,000 people have died in Italy, France, and Spain alone.³ For decades we were under the illusion that our island of relative bliss could isolate itself from global turmoil. We chose to ignore dangers in plain view, instead of taking precautions that could have saved lives. We are advised to not repeat this mistake with regard to another global security threat: climate change.

The EU needs a true climate foreign policy, and Germany should help to lead this effort.

After Us, the Floods

Last year’s apocalyptic wildfires in Australia and this January’s devastating floods in Jakarta gave us a glimpse of what is to come if we don’t act now. In fact, for many, the changing climate already poses a massive security threat. In 2019, 24.9 million people were internally displaced as a result of weather-related disasters.⁴ Absent drastic measures, such events will become even more frequent and destructive in the future. The World Bank estimates that by 2050, as a result of climate change, more than 140 million people could become internally displaced in Sub-Saharan Africa, South Asia, and Latin America alone.⁵

These climate impacts can also undermine peace, particularly in fragile states.⁶ While the effect of climate change on armed conflict within states has only been modest so far, it is expected to rise with global temperatures.⁷ The same holds true for interstate conflicts, as climate change may exacerbate resource scarcity or create new and contested abundance, like in the Arctic.⁸

Building Back a Better EU Foreign Policy: Climate and Security after COVID-19

Wolfgang Ischinger
we continue on the current path, climate change will become one of the most serious—if not the dominant threat—to individual and global security. The COVID-19 crisis underscores that a 21st century understanding of security needs to include non-traditional threats like climate change and points to the importance of reflecting and integrating this broader concept of security in our domestic and foreign policies. Adapting our definition of national and international security is so important because it decisively influences the way we allocate our resources. Our collective lack of pandemic preparedness—despite ample warnings—has highlighted this fact in the most painful manner. It is good that the strategic community increasingly embraces the link between security and climate change. Eight years ago, when we started to debate the issue in Munich on a regular basis, many were skeptical as to whether climate change was a relevant agenda item for a conference on security. That is certainly no longer the case, but political action has failed to match the rhetoric. This is particularly evident with regard to the weak implementation of the agreements reached at the UN Climate Change Conferences: rather than limiting global warming to 1.5°C, as governments agreed in Paris in 2015, the world is currently heading for 3.2°C global warming by 2100. Reducing greenhouse gas emissions is the single most effective action we can take to limit climate-related security risks. Yet it is only due to the massive economic shock of a pandemic that 2020 may be the first year in which annual global emissions actually fall by the amount necessary to meet the Paris objectives.

Today, most people understand that no state can address global challenges like pandemics or climate change on its own. However, international efforts are being undermined as multilateral fora and instruments lose support and nationalism gains ground. The United States’ withdrawal from the Paris Agreement—and now possibly the World Health Organization—is a stark illustration of this trend. With governments understandably focused on addressing the public health emergency and economic downturn, the COVID-19 crisis has further contributed to the inward turn of many countries and diverted attention from more long-term policy objectives.

In order to offset these developments it is paramount to both strengthen the capacities of international and regional organizations and establish coalitions-of-the-willing that are able and willing to lead the way through the multilateral deadlock. Given their economic and political weight in the world, it is the European Union (EU) and its member states that have a particularly important role to play in this regard.

The EU and Multilateral Climate Action

To its credit, in the wake of the COVID-19 pandemic, the EU has made significant strides to boost climate action. Underlining that “for climate change, […] there is no vaccine,” President of the European Commission, Ursula von der Leyen, has placed the European Green Deal at the heart of the EU recovery plan. Unfortunately, both in the Commission’s initial proposals, in the subsequent deal agreed by EU leaders, and in the current budget discussions in the European Parliament, the foreign policy dimension of EU action on COVID-19 and climate change has been largely absent.

The imperative of “building back better” should not be limited to our continent. For one, the EU should seek additional ways to support international climate institutions and mechanisms to offset waning support from others during the COVID-19 crisis. The world has very little time left to limit climate change before its effects become irreversible. We simply cannot afford further delays.

But a true climate foreign policy must be about more than reducing emissions. Climate security has to be embedded strategically and operationally in EU foreign policies, such as development aid, global health security, conflict prevention, climate diplomacy, as well as global economic and trade policies.

Many countries in Europe’s southern neighborhood and the Sahel are both highly fragile and particularly vulnerable to the effects of climate change. In the COVID-19 crisis, these same countries face not only the immediate public health implications of the virus, but also potentially deadlier secondary and tertiary effects, such as rapid economic deterioration and food insecurity. Supporting our neighbors during these difficult times is a humanitarian imperative, but it is also a strategic imperative, as further destabilization of these regions will have direct effects on Europe’s security.
Wherever feasible, policies designed to address the manifold threats posed by the pandemic in these regions should also seek to mitigate the threat of climate change, following a green do no harm principle much like EU-internal policies. For example, EU-led investment programs should prioritize climate-friendly industries. Particular attention should also be paid to democracy promotion and governance support as both the COVID-19 pandemic and climate change threaten to increase social tensions in these regions.

Endnotes

More Than an Afterthought

Although climate change has been part of the EU’s security agenda since 2008, including in the 2016 EU Global Strategy, in practice it is still all too often only a foreign policy afterthought. The COVID-19 pandemic is both a reminder and an opportunity to change that. To that end, Germany should use its forthcoming EU Council Presidency to move the climate-security nexus up on the EU agenda and build a better and more comprehensive EU foreign policy.

To Build Back Better, We Must Cooperate on Climate Change

Helga Maria Schmid

The havoc caused by COVID-19 is yet another wake-up call that demonstrates nature’s ultimate power over our lives and societies, and the urgent need for us to better respect and protect the environment upon which we depend. As we seek to recover from the crisis, we must learn from our past mistakes and not become entrenched in them. Building back better means mending our economies and our planet at the same time. It also calls for a stronger integration of the most profound underlying environmental challenge we face—climate change—in the process of building back. This is a tall order, but, as our increasingly vocal youth remind us, we cannot afford to fail.

International cooperation is critical to the success of overcoming this pandemic and addressing climate change. Just as the virus ignores all borders and unleashes its devastation without regard for the responsibility or resilience of nations, so do the emissions from industry or melting permafrost. To win, we must demonstrate cooperation and solidarity, as individual nations, as partners, and as a single global community.

The negotiation and signature of the Paris Agreement on Climate Change by 196 states demonstrated that such an approach—and a more sustainable and resilient future—is possible. Together with another landmark global agreement—the 2030 Agenda for Sustainable Development—it charts a clear path to deliver the economic and societal transformation needed to preserve our planet and shared future.

The EU has always been at the forefront of this multilateral climate diplomacy and is strongly committed to implementing the Paris Agreement and to sustaining and nurturing the global momentum behind its goals. COP-26, due now to take place in November 2021, will be a moment of reckoning. At the meeting in Glasgow, the international community will have to set new, ambitious, emissions-reduction targets for 2030, and map the way towards climate neutrality by mid-century.
The Urgency of Now

But even this may not be enough. Science tells us that the climate crisis is accelerating. We must adapt faster. In December of last year, the EU set a target of being climate neutral by 2050 and adopted an ambitious new growth strategy to this end. The European Green Deal, together with our budget for the next seven years and the EU Recovery Plan, are designed to transform Europe into a greener, resource-efficient and competitive economy, and to help our partners to do likewise. We are determined to succeed in this ambition, and to inspire others to follow suit.

Such ambitious and integrated approaches are important for all, but particularly for the world’s largest economies. G20 countries account for almost 80 percent of global CO2 emissions. The G7 and G20 are thus important multilateral fora to drive and coordinate our climate efforts, particularly as both will play critical roles in the multilateral coordination of the post-COVID economic recovery. Global solidarity and multilateralism will be crucial to avoid any lapse into a fossil fuel and resource-intensive recovery. As we rebuild our economies, we must accelerate the transition to a low-carbon future. Our investments now must secure our future, not lock us into an unsustainable past.

The EU devotes considerable energy and resources to its climate diplomacy efforts, with a tailor-made approach promoting constructive engagement with our partners around the world; large-scale and visible activities such as “Climate Diplomacy Weeks;” dedicated programmes for partnership actions with, for example, G20 partners; and new initiatives to engage least developed countries and small island developing states. The EU also leads international cooperation on sustainable finance and works with the international financial institutions to increase green financing.

Mobilizing partnerships at all levels—bilateral and multilateral—to deliver on our climate goals is a core tenet of EU foreign policy. Another is to work to prevent and mitigate the negative consequences of climate change, including related security risks. Climate change is a serious threat multiplier, acting as a catalyst to destabilization and conflict, in particular in the most fragile states. The UN estimates that 40 percent of conflicts are exacerbated by environmental factors. Climate degradation worsens already fragile situations. The most vulnerable pay the heaviest price from natural disasters, increased pressure on natural resources, loss of livelihood, forced displacement or rising social and political unrest. Global warming is not a ‘soft threat’ if you live near Lake Chad and have seen your livelihood disappear along with the...
water you need. The current pandemic will further amplify climate-related security challenges as more people find their livelihoods destabilized.

The EU’s Impact

In 2008, I was involved in the drafting of a ground-breaking paper on “Climate Change and International Security.” Since then, the EU has led the way, designing its support for the most vulnerable countries to combine adaptation to global warming with conflict prevention. Additionally, Germany has done important work to push the issue up the agenda of the United Nations Security Council.

We work in North Darfur to improve the management of scarce fresh water, so that communities can share what they need to grow food. We work in Vanuatu, to help the country adapt to better handle more frequent extreme weather events. Our satellites track the impacts of climate change, feeding into our conflict early warning system and long-term planning, and helping with disaster relief. Our security Missions and Operations engage to promote security in fragile regions, such as in the Sahel and Horn of Africa where tensions are increasing as the climate deteriorates. And we will do more. Already the world’s biggest climate donor, the EU will continue to increase its financial footprint, with at least 22 billion Euros dedicated to EU international cooperation on climate over the next 7 years.

As a result of our efforts and those of many like-minded partners, multi-level and multilateral governance is stepping up to the challenge of climate change, in all its complexity. Governments certainly bear the lion’s share of the burden in setting ambitious targets, developing the right regulatory frameworks, and ensuring all actors deliver on their responsibilities. They are increasingly engaged and cooperating at all levels, including for example with the Global Covenant of Mayors for Climate and Energy. But societies and economies are not shaped by governments alone. One of the major innovations in multilateral diplomacy of the Paris Agreement was the engagement of non-state actors, and the recognition of their role in the fight against climate change. Its implementation will need even more active public-private partnerships and even wider and deeper community engagement.

Climate diplomacy, like so many aspects of our lives, will be forever marked by the impact of COVID-19. It is up to us to ensure this crisis does not hamper but rather accelerates the pace of multilateralism and climate action. Just like the virus, addressing global warming requires a massive global effort. The EU will stick firmly to its commitments and seize this opportunity for further reform, but we need all our partners to do the same. Together, we have a once-in-a-generation opportunity to “build back better.”

HELGA MARIA SCHMID is Secretary General of the European External Action Service (EEAS). Within the EU Institutions Ms. Schmid previously served as the Deputy Secretary General for Political Affairs (EEAS) and Director of the Policy Planning and Early Warning Unit of the High Representative for the CFSP (General Secretariat of the Council of the EU). Before joining the EU Institutions Ms. Schmid was the Head of the Political Staff of the German Federal Foreign Office and Head of the Office of the German Minister for Foreign Affairs.

Q & A

THE ROLE OF MULTILATERALISM AND MULTI-LEVEL GOVERNANCE:

An Interview with OSCE Secretary General Thomas Greminger*

* This interview was conducted in early July 2020, when Ambassador Greminger still held the post of OSCE Secretary-General.
Q: The OSCE takes what it calls a “comprehensive approach to security.” What does that entail? What role does climate change play in the organization’s work?

Thank you, I am delighted for this opportunity to discuss climate change and security with you, a topic close to my heart.

The OSCE’s concept of security is multi-dimensional. We are interested in politico-military matters, the economic and environmental aspects of security, as well as human rights issues and their relationship with security at the individual, national, and regional levels. All of these different dimensions are viewed as complementary, interconnected, and of equal importance. We also work on the premise that insecurity in one OSCE participating State is a concern for everyone else. Dialogue and cooperation between our 57 participating States serve to address challenges to our common security.

The 1975 Helsinki Final Act, the founding document of the OSCE, was innovative not only for pioneering our organization’s comprehensive and co-operative concept of security; it was also among the first internationally agreed documents that recognized climate phenomena as a common challenge. The Helsinki Final Act called on OSCE participating States to cooperate for research on “adaptation to climatic extremes,” even before the first World Climate Conference in 1979.

The OSCE, was innovative not only for pioneering our organization’s comprehensive and co-operative concept of security; it was also among the first internationally agreed documents that recognized climate phenomena as a common challenge. The Helsinki Final Act called on OSCE participating States to cooperate for research on “adaptation to climatic extremes,” even before the first World Climate Conference in 1979.

The climate-security nexus is not yet a main-stream feature of the OSCE’s security agenda. OSCE participating States so far lack a common approach, but I believe this could change in the years to come.

Early warning and prevention are among the cornerstones of the OSCE’s comprehensive approach to security. In my mind, the OSCE could play a stronger role in supporting OSCE participating States to assess climate-related security risks. We have already started doing this in some subregions. Our network of field operations could be a strong asset in fostering regional and trans-boundary cooperation.

We also need to develop climate-sensitive conflict prevention approaches and ensure that climate action is conflict-sensitive. Even without establishing a direct causal link between climate change and conflict, it makes sense to factor in all elements that might help participating States deal with possible repercussions of climate change on their security.

Q: Do you and the OSCE consider climate protection part of security?

Climate change is a defining challenge of our time that affects our lives in profound ways. Scientists from more than 150 countries recently declared a climate emergency. They warn us that we will face more frequent and more powerful floods, droughts, storms, and heatwaves as well as accelerated rising sea levels. This again brings along increased scarcity and competition for vital resources like water.

Climate change and its impacts are no longer an imagined future scenario—its effects are already upon us, affecting the lives and livelihoods of millions of people worldwide. Not one of our 57 OSCE participating States is immune to these adverse impacts, which affect our security and stability both within and across borders. That is why I believe climate change warrants more attention in the OSCE.

The climate-security nexus is not yet a main-stream feature of the OSCE’s security agenda. OSCE participating States so far lack a common approach, but I believe this could change in the years to come.

Early warning and prevention are among the cornerstones of the OSCE’s comprehensive approach to security. In my mind, the OSCE could play a stronger role in supporting OSCE participating States to assess climate-related security risks. We have already started doing this in some subregions. Our network of field operations could be a strong asset in fostering regional and trans-boundary cooperation.

We also need to develop climate-sensitive conflict prevention approaches and ensure that climate action is conflict-sensitive. Even without establishing a direct causal link between climate change and conflict, it makes sense to factor in all elements that might help participating States deal with possible repercussions of climate change on their security.

Q: How will climate change influence how we govern? And what steps can the foreign policy community take to improve our response to climate change? Are there lessons from the OSCE’s work that you think apply to how multilateralism and multi-governance can help mitigate climate change?

Today we are facing an unprecedented confluence of transnational threats and global challenges. Most of these complex and interconnected challenges—including climate change—are not confined within borders, and no single country or organization can tackle them alone.

At the same time, multilateral mechanisms have come under greater pressure over recent years, making genuine multilateral dialogue more difficult. The adoption of the Paris Agreement in 2015 and its ratification shortly after, is one of the greatest successes of multilateralism. Unfortunately, implementation is lagging behind and the slow pace of action is at odds with the urgency of the problem.

Similar to the COVID-19 pandemic, climate change is a systemic risk that calls for extensive cooperation across multiple sectors, borders, and regions. Partnerships and cooperation among foreign policy stakeholders, including the humanitarian, development, and security communities are essential to enhancing synergies and revitalizing multilateral approaches to climate action and the handling of climate-related security risks.
The climate security dialogue that takes place on OSCE platforms contributes to climate diplomacy by raising political awareness and allowing for discussion of diverging views in the search of a common approach. That said, we still have a ways to go to demonstrate the benefits of co-operation and to reveal the costs of not cooperating.

Consensus-based decision-making is challenging, especially on issues where OSCE participating States have diverse priorities. But consensus is a powerful tool because it ensures that decisions reached are truly co-owned. We try to pursue a unifying approach rather than a divisive one, focusing on finding areas of common interest or concern.

Given the growing recognition of the role of climate change in exacerbating risks to security and stability globally, and in the OSCE region, we must continue to search for viable opportunities to revitalize multilateral approaches to tackle these challenges. The current COVID-19 crisis has highlighted how interconnected and interdependent our economies and social systems are, and how such complex crises can magnify existing vulnerabilities and create new ones across multiple sectors, levels, and timelines.

Learning from this experience, we should invest more in speeding up the transition to green, low-carbon, and climate-resilient growth. We should enable climate-informed policy and decision-making by generating accurate data and evidence on climate change impacts. And we should retain enough flexibility in our approach so that we are able to tackle the uncertainties surrounding the climate risk landscape and its cascading consequences.

Q: For the last three years you have been serving as the Secretary General and in 2014 during Switzerland’s OSCE Chairmanship, you served as the Chair of the OSCE Permanent Council. Is there a particular OSCE climate-related project that is close to your heart?

The OSCE has been implementing projects related to climate change for more than a decade, in close partnership with other regional and international partners, including the European Union, UNDP, UNEP, UNECE, and others.

Allow me to highlight one project that we recently launched together with adelphi, “Strengthening Responses to Security Risks from Climate Change in South-Eastern Europe, Eastern Europe, the South Caucasus and Central Asia.”

With this project, we are bringing a regional approach to climate action that bridges national and global-level initiatives. The project aims to raise political awareness on security implications of climate change in the four regions where it is implemented. The project further aims to support a regional-level dialogue on climate-related security risks and to identify joint measures that would allow neighboring countries to manage such risks together.

We started with South-Eastern Europe, where we are currently conducting a consultation process to identify and map climate security hotspots. A wide variety of actors from governments, NGOs, and academia in the region are participating. The next step will be to support the development of transboundary climate change adaptation measures for selected priority hotspots.

I highlight this project because it will not only support OSCE participating States in implementing their commitments for climate action but will also foster regional cooperation, contributing to broader efforts for conflict prevention and confidence-building.

Together with the Union for the Mediterranean, we are also currently developing a similar program, primarily for the OSCE’s Mediterranean Partners.

All these initiatives have one common goal: to transform climate risks into opportunities for cooperation that would enhance security and stability in the OSCE region and beyond.

In conclusion, let me underline that five years after the adoption of the 2030 Agenda, the Paris Agreement, and the Sendai Framework for Disaster Risk Reduction, it is the responsibility of the entire international community, including the OSCE, to revitalize the spirit of solidarity, trust, confidence, and collective action at all levels for a better and climate secure future.

AMBASSADOR
THOMAS GREAMINGER

served as Secretary General of the OSCE from July 2017 to July 2020. Ambassador Greminger joined the diplomatic service of the Federal Department of Foreign Affairs (FDFA) in 1990 and has held numerous senior management positions during his career. Prior to his appointment as OSCE Secretary General, he was Deputy Director General of the Swiss Agency for Development and Cooperation, overseeing an annual budget of USD 730 million and 900 staff in Bern and abroad. From 2010 to 2015, Greminger was the Permanent Representative of Switzerland to the OSCE, serving as Chair of the Permanent Council during Switzerland’s 2014 OSCE Chairmanship. Prior to his assignment at the Permanent Delegation of Switzerland to the OSCE, Greminger was Head of the Federal Department of Foreign Affairs’ Human Security Division, Switzerland’s competence centre for peace, human rights, and humanitarian and migration policy. Greminger holds a PhD in history from the University of Zurich and the rank of Lieutenant Colonel (General Staff) in the Swiss Armed Forces. He has authored a number of publications on military history, conflict management, peacekeeping, development and human rights. His mother tongue is German; he speaks fluent English and French, and has a working knowledge of Portuguese. In 2012, he was awarded the OSCE white ribbon for his long-standing support for gender equality.
In Depth

“Multilateralism,” the Climate Challenge, and the (Greater Metropolitan) Paris Agreement

Susan Biniaz

Before turning to the Paris Agreement in particular, let me start with an admission. As a lawyer for the U.S. State Department for over thirty years (and the lead climate lawyer for over twenty-five), I was involved in negotiating many of the most significant multilateral environment agreements of the past few decades. But I have never been wild about the term “multilateral.” For one thing, I have found a lack of clarity when it comes to its meaning:

» To a lawyer, it’s confusing. When people talk about a “multilateral” approach, they might mean it in its literal sense (i.e., involving three or more parties), in its fullest sense (i.e., a global regime), or in a sense that is more political than legal (i.e., in contrast to “unilateralism” or “nationalism”).

» It is often not possible to motivate States to agree on a “multilateral” approach unless one State (or a small group of States) catalyzes such a solution by first acting unilaterally. When an international body reaches agreement, but was only able to do so because of a unilateral action, is that an example of multilateralism?

» An agreement might be “multilateral” in one respect but not necessarily in another. For example, a multilateral agreement might set an environmental standard but be silent on enforcement; if a State opts to enforce the standard through a trade measure, such as an import restriction, is that trade measure “multilateral” or “unilateral?” If a multilateral environmental agreement requires Parties to restrict trade with non-Parties, is the trade measure “multilateral” vis-à-vis the State that did not join?

» Even within the context of a global regime, there can be gradations of “multilateralism.” The international climate change regime is arguably at the extreme end of the spectrum; not only is there near-universal participation, but decisions are taken by consensus. However, a global agreement could operate in a different way. The Montreal Protocol, for example, is global in terms of its membership but can take decisions by less-than-global super-majority voting, in some cases binding all Parties.

Not only do I find the concept of “multilateralism” to lack clarity, but my experience leads me to believe that there is nothing magical or superior about a multilateral approach per se. Such an approach might have its advantages, serving the purposes of, for example:

» promoting environmental effectiveness, where action in many countries is necessary to address the environmental problem in question;

» reducing competitiveness concerns, which might have otherwise impeded action;

» addressing the interests of States affected by the environmental problem; and/or,

» enhancing the legitimacy of the regime.

However, those benefits might come at a cost. A multilateral approach might impede action—by slowing things down, by making it more difficult (or even impossible) to reach agreement, or by empowering reluctant participants. In some situations, unilateral, bilateral, or “mini-lateral” approaches might be more effective. In the case of addressing CO2 emissions from international aviation, for example, it took a unilateral act on the part of the European Union to prompt the development of an international approach. It is therefore hard to say, in a vacuum, whether “multilateralism” is the appropriate path and, even if so, exactly which form it should take.

For these reasons, I think it is useful to sidestep labels and focus instead on pragmatic...
It is no wonder that it took years of trial and error to elaborate the regime. The Parties needed to strike the right balance between stringency and participation, among other factors. Kyoto veered in the direction of stringency but sacrificed participation; it included emissions cuts that were legally binding and internationally negotiated but they did not apply to developing countries (even those with rapidly growing emissions), and the United States never joined. On the other hand, the Copenhagen Accord (as filled out by the Cancun agreements) achieved widespread participation, including both the United States and China, but was thoroughly non-binding and lacked rigor in terms of rules and guidelines. Against all odds, the Paris Agreement secured stringency in terms of both form and content, as well as global participation. However, the Paris Agreement was not just a surprisingly good outcome in light of the climate regime’s difficult history; it is also a positive agreement on the merits, with the potential to deliver necessary ambition. Among other things:

- The Paris Agreement clearly sets forth the key climate objectives—limiting global temperature increase, enhancing resilience/adaptation to climate impacts, and making financial flows consistent with the other two objectives.
- Its architecture, which is both long-term and reliant on nationally determined contributions, allows Parties to focus their energies on implementation and increasing ambition, rather than continually having to negotiate new agreements/amendments/targets/etc.
- It creates an ambition cycle, with regular global assessments and updates of national action.
- It provides for robust reporting and review of both emissions and implementation.
- It finds the sweet spot between national discretion and international rules, accommodating a wide array of different national circumstances within the context of various global goals and requirements.
- The goals of the Paris Agreement are floors, not ceilings. Nothing in the Agreement prevents the Parties, or groups of Parties, from aiming higher (such as for a temperature goal of 1.5°C, rather than “well below 2,” or for net zero emissions by 2050, as opposed to the second half of the century). That is already happening.
- Finally, it breaks new ground in recognizing and encouraging the contributions of non-State actors.

As the ad for Prego spaghetti sauce used to say, “it’s in there.”

Criticisms of the Paris Agreement

Some of the criticisms of Paris are based on misimpressions. For example, it is sometimes said that the Agreement is a failure because the NDCs put the world on track to warm by three or more degrees Celsius. That would be a valid criticism if the Agreement stopped with one set of NDCs. But the initial NDCs were never designed to fully achieve the Agreement’s temperature goal. Rather, they were intended to guide the early years and then be replaced by more ambitious NDCs in subsequent years. The Agreement has an indefinite time-frame, with regular global assessments and NDC updates along the way.

Other critiques, for example, that countries have not been doing enough under the Agreement to tackle climate change, say more about the nature of the climate beast—and the insufficient political will to address it—than about the Agreement itself. Moreover, two unanticipated events since Paris have further affected enthusiasm for climate action: the U.S. withdrawal from Paris has likely eroded political will, at least in some countries, and the arrival of a pandemic in 2020 has, at a minimum, diverted political attention.

Criticisms that the Agreement would be stronger if the targets were negotiated, legally binding, and enforceable, do not address whether a “stronger” agreement, at least on paper, would have been more effective in real life. Even assuming for the sake of argument that such a design could have been agreed to, would it have had a positive or negative effect on participation (including that of the United States and China), the level of ambition, and actual implementation?

But More Needs to Be Done…

That said, much more needs to be done to effectively grapple with the enormity of the climate challenge. The international community is currently not doing enough to address climate change, whether by reducing greenhouse gas emissions, adapting to impacts, or otherwise. Per the IPCC and other sources, we are not nearly on track to
keep the world at a safe temperature—one that does not involve devastating impacts and upend life as we know it; even at a “safe” temperature, there would be significant negative impacts.

If we are to avoid the worst consequences of climate change, we need to act with sufficient vigor and speed to effectuate a massive transition from fossil to non-fossil energy and the large-scale removal of carbon from the atmosphere.

Five Steps Towards Achieving the Paris Objectives

I would suggest five things that need to happen to move us closer toward achievement of the Paris objectives—some inside Paris proper and some outside, in the “greater metropolitan” area. COVID-19 injects huge “known unknowns” into the mix, and others might equally pick five different items for their agenda, but here is my multi-forum, multi-actor list.

1. NDCs – It Takes a Village

The “nationally determined contribution” (NDC) is the backbone of the Paris Agreement. This design feature of the Agreement, which relies on the Parties to set and update their emissions contributions rather than specifically directing them to do X or not do Y, depends upon the Parties’ political will to deliver adequate reductions over time. There is nothing automatic about it.

For the NDCs to be successful, help will need to take many forms, from many sources:

- High-level political attention (such as that provided by the UN Secretary General, the G7, and the G20) is needed to help keep Parties focused on the importance of NDC implementation and enhancement.
- Financial and technical assistance (such as through the Green Climate Fund and the NDC Partnership) is needed to help some developing countries with the implementation of their NDCs.
- Pressure from civil society is needed to help keep climate action on the front burner, as well as push for stronger commitments.
- Action by sub-national governments and other non-State actors is needed to contribute to NDC implementation, as well as provide confidence to Parties to raise their ambition.
- Should the United States return to Paris in the short term, its leadership and other tools will be needed to promote global NDC implementation and improvement. Admittedly, the atmosphere doesn’t care whether emissions are reduced pursuant to an NDC or otherwise. However, NDCs are the currency of the Paris Agreement, and it is important for the viability of the regime to ensure that a significant amount of climate action is captured in this form.

2. Specific Initiatives – Getting to Net Zero

In the few years since 2015, when the Paris Agreement was adopted, conventional wisdom has shifted in the direction of the need for both a stronger limit on global temperature increase (1.5°C, rather than well below 2) and a near-term goal for net zero emissions (2050, rather than the second half of the century). As such, there needs to be greater emphasis on initiatives focusing on specific decarbonization objectives (whether related to reducing emissions, increasing removals, or both) among smaller sets of actors.

- In terms of “who,” there could be a role for sub-sets of Parties (e.g., national governments) and/or multi-stakeholder initiatives involving sub-national governments, companies, etc.
- In terms of “what,” efforts could involve, for example, sectoral cooperation (e.g., cement) and/or a specific objective (e.g., related to the internal combustion engine).
- In terms of “where,” efforts could take place in a forum outside the UNFCCC/Paris Agreement, such as in a revived U.S.-led process involving the world’s major economies, or the G20. Instead or in addition, they could be rooted somehow in the UNFCCC/Paris; at a minimum, outside cooperative arrangements could potentially be fed back into the Paris regime, e.g., as part of the regular global stocktake.
- In terms of “how,” to the extent that “agreement” is reached on any particular subject, initiatives might result in a non-binding outcome, a binding agreement, or other arrangements; in some cases, there may just be cooperation without a particular written outcome.

3. The Conference of the Parties (COP) – In Need of Reimagining

Even before COVID-19, it was a good time to review and rethink the “COP” the annual UNFCCC climate change conference.

The COP has historically revolved around inter-governmental negotiations, with success measured (rightly or wrongly) by the extent to which the Parties to the UN Framework Convention or the Paris Agreement are able to reach agreement. However, things are changing:

- With the Paris Agreement in force, the Paris design based on non-negotiated mitigation contributions, and the “rulebook” nearly completed, future COPs will involve much less negotiation.
- There is a growing disconnect between the demand for climate action and what the official COP has been able to deliver.
- Non-State entities have become more significant as climate actors, not just in the United States (where they work to uphold the Paris goals in the face of withdrawal) but all over the world. They are not only taking extensive action but also discussing and debating emerging issues and approaches (such as carbon dioxide removal) in ways that the COP is not. At the recent Madrid COP there were times when the so-called “side events” seemed like the main event, and the official proceedings seemed like the side event.

The COP’s role as an action-forcing event is too important to alter its annual frequency. But it is time for the COP to adapt. As just two examples:

- A more effective COP would put greater emphasis on, and energy into, practical implementation than on agreed COP pronouncements. For example, a session on unpacking the issues involved in developing a national strategy to decarbonize the economy by the middle of the century could be more useful than chasing a consensus sentence on such strategies (which is likely
If we are to avoid the worst consequences of climate change, we need to act with sufficient vigor and speed to effectuate a massive transition from fossil to non-fossil energy and the large-scale removal of carbon from the atmosphere.

A COP should aim to reduce the gap between the official universe (the Parties) and the unofficial universe (the non-State actors). The UNFCCC regime is already far ahead of others in terms of supporting and engaging so-called “non-Party stakeholders.” More could be done, however, to combine the worlds, such as through platforms for multi-stakeholder initiatives, greater ease of access for states, cities, etc.

Of course, COPs cannot be expected to evolve effectively unless there is also an evolution in the metrics used to judge them. For example, if COP watchers treat implementation as dull and focus unduly on the presence or absence of particular words in an official outcome, reform will be more difficult. At the same time, unless COPs can change to fit the new realities (and COVID-19 has added extra challenges to staging a large conference, to be sure), they risk losing force and relevance.

4. The Importance of Other Fora – It’s Your Problem Too

The Paris Agreement cannot fully advance its objectives without the help of other international agreements and institutions. As noted above, certain fora will need to lend political, technical, and/or financial support to the implementation and enhancement of NDCs. But others also need to step up, as the Montreal Protocol on Substances that Deplete the Ozone Layer did when it adopted the 2016 Kigali Amendment to regulate the production and consumption of hydrofluorocarbons (HFCs).

In some cases, other fora may be appropriate because an issue demands specialized expertise. For example, the Paris Agreement calls for strengthened cooperative action on technology development and transfer. However, no one would expect an agreement to reduce or eliminate tariffs on climate-friendly goods to be negotiated under Paris auspices.

In other cases, the UNFCCC regime has designated particular fora to address greenhouse gas emissions. In this regard, emissions from international bunker fuels are addressed by the International Civil Aviation Organization (ICAO) and the International Maritime Organization (IMO), respectively. ICAO has adopted a global market-based mechanism to offset international aviation emissions; more needs to be done in the IMO, which has so far adopted only an initial GHG strategy.

In addition, climate impacts are bound to have a material effect on other fields. Certain climate impacts relate to environmental fields, such as biodiversity, fisheries, and
SUSAN BINIAZ is a former Deputy Legal Adviser at the U.S. Department of State, worked on international environmental issues for many years and served as the lead U.S. climate lawyer from 1989 until early 2017. She is currently a Senior Fellow at the UN Foundation and a Senior Fellow and Lecturer at the Yale Jackson Institute for Global Affairs. Since leaving government, she has also taught courses on international environmental law and the climate change negotiations at various law schools, including Columbia, Chicago, and Yale.

5. Climate = Foreign Policy

To date, climate change has been largely addressed alongside foreign policy, rather than as part of it. In the United States, even under the climate-friendly Obama Administration, and with international climate negotiations embedded in the State Department rather than another agency, climate issues were not mainstreamed into the day-to-day business of the department.

However, to the extent that efforts in the above realms are to be successful, many will depend, at least in part, on convincing officials and other actors in “traditional” foreign policy spaces of the need to integrate climate change into their worlds.

This needs to change. Steps such as these could help:

» Lead by example: Those in leadership positions should make clear to policymakers that the days of giving short shrift to climate considerations are over. There needs to be institutional recognition of the many ways in which actions taken in certain fields (e.g., trade, aviation, shipping, agriculture) can help reduce climate change and how certain other fields (e.g., migration, law of the sea, food security, conflict) are potentially affected by climate impacts.

» Educate: Governments should explore ways to integrate climate literacy into standard diplomatic training and continuing education.

» Cut the jargon: Climate specialists, especially those involved in the international negotiations/regime, need to do a better job of speaking in a language that non-specialists can understand. Partly because the regime is complicated, and partly because particular words have taken on outsized significance in the negotiating process, climate negotiators (myself included) tend to speak in code. We need to make the climate regime more accessible.

» Institutionalize through structure and personnel: Governments should organize themselves so as to better integrate climate change with traditional foreign policy issues. This could involve not only how they set up their bureaucratic structures (e.g., including international climate issues within the ministry of foreign affairs) but how they select and assign personnel.

Conclusion

In sum, we have the right foundation—it’s the Paris Agreement. Like any foundation, it needs additional layers or, to pick up the city metaphor, additional structures both within Paris proper and within its surrounding areas. These need to include ever-improving NDCs from Parties, heightened commitments from smaller coalitions, ambitious action from non-State actors, help from other international agreements, and integration of climate issues across the foreign policy landscape. The international community may or may not succeed in avoiding the worst climate impacts; if it fails to do so, however, it will not be a function of the Paris Agreement but rather a lack of political will that no agreement alone, whatever its design, could overcome.
Climate change confronts humanity with an existential challenge. Climate-related disasters already cause immense human suffering as well as large economic, financial, and ecological damages. Direct damages from Thailand’s 2011 floods, for example, cost around 10 percent of the country’s GDP. Over the past decade, direct damages of climate-related disasters added up to $1.3 trillion (or around 0.2 percent of world GDP on average per year). Indirect damages were even higher: although precise estimates currently do not exist, some have calculated that indirect costs may be five to ten times the direct costs, or $6.5–$13 trillion. For instance, the total estimated cost of California’s 2018 wildfires is about eleven percent of California’s GDP, versus only 1 percent for the direct damage. Moreover, climate science is sending us a clear warning: Unless we change our ineffective current policies, extreme weather events are destined to become more destructive and more frequent, and global warming will have increasingly disruptive socio-economic impacts.

Climate change puts global financial stability at risk. Destructive hurricanes and droughts not only increasingly chip away at the global economy, but they also weaken financial stability. Our recent Global Financial Stability Report examined the impact of climate change’s physical risk (the loss of life and property as well as disruptions to economic activity) on financial stability. It found that stock market investors are not paying enough attention to this risk, and they should.1

The increasingly destructive impacts of hurricanes and wildfires illustrate that even seemingly well-known types of risks can take us by surprise. Addressing the climate challenge fundamentally requires that the global economy move away from a dependence on resources that produce high carbon dioxide emissions, like coal. To do so will require planning for a necessary and complex transition to a low-carbon economy. Firms with business models dependent on carbon emissions could see their earnings decline and their funding costs increase, while other industries may benefit from new opportunities. Global investments to address climate change are estimated in trillions of U.S. dollars, and most are likely to be intermediated through the financial system. Financial...
The International Monetary Fund (IMF) is helping countries better understand the macro-financial transmission of climate risks. Analyzing risks and vulnerabilities is at the core of what we do at the Fund. The IMF pioneered the use of stress test for financial stability analysis 20 years ago when, along with the World Bank, it began the Financial Sector Assessment Program (FSAP). Over the past decade, one in five FSAP assessments considered climate-related risks, and IMF staff have been working to increase coverage of those risks in ongoing and planned FSAPs. Earlier tests focused on physical risks, such as insurance losses and nonperforming loans associated with natural disasters. Recently, our stress tests—such as the 2019 assessment for the Bahamas—have included scenarios that analyze the combined macro-financial impact of a severe hurricane and an economic downturn. More comprehensive assessments are planned in other countries, and IMF staff have started examining the financial system’s exposures to the low-carbon transition.

Next steps include capturing second-round effects, in which asset price declines lead to “fire sales,” generating vicious cycles that amplify the initial shock. IMF staff collaborate with World Bank colleagues, NGFS members, and others to further upgrade the framework for assessing climate-related risks.

Only with accurate and standardized reporting of climate risks in financial statements can investors discern companies’ exposures to climate-related risks. The Fund supports efforts to strengthen the quality and consistency of climate disclosures. Efforts such as those of the Task Force on Climate-related Financial Disclosures are welcome, but IMF research has found disclosures to be uneven across countries and asset classes. Partly as a result, investors have been reluctant to invest at the scale necessary to mitigate climate change, especially since policy action to address climate change has been lagging.

The standardization of climate risk disclosures would improve the comparability of information in financial statements across markets and jurisdictions. Granular, firm-specific information on exposures and vulnerabilities would help lenders, insurers, and investors to better grasp climate risk. It would also help improve climate stress testing by central banks, supervisors, and other oversight bodies. Developing a global climate risk disclosure framework requires stepping up global cooperation and global leadership. Such a framework is essential for preserving financial stability.

More broadly, the IMF can help by providing advice to policymakers on climate-related macro-financial policies. Addressing climate change in a sustainable way requires strong global policy action across many policy fronts. Macro-financial policies have a key role to play due to the magnitude and global nature of the risks and the strong complementarities of climate protection with macroeconomic performance and financial stability. For example, expanding the availability of insurance and increasing the sovereign’s financial strength can reduce the impact of climatic disasters, thus decreasing financial stability risks. Fiscal policies (such as carbon pricing) and structural policies (such as emission standards) have key roles to play in reducing emissions and mobilizing revenues, but the financial sector is also critical. Financial institutions and markets already provide financial protection through insurance and other risk-sharing mechanisms, such as catastrophe bonds. The financial system can help mobilize resources for investments in climate mitigation (reducing emissions) and adaptation (building resilience) in response to price signals such as carbon prices. If policymakers implement policies to price externalities and to incentivize the low-carbon transition, the financial system can help achieve these goals efficiently. The IMF has thus been integrating climate change into its financial sector policy advice.
The COVID-19 pandemic reminds us that crisis preparedness and resilience are essential to manage risks from uncertain, complex events that can have extreme economic and human costs. The pandemic highlights the fragility of our natural world, underscoring the fact that climate change remains an urgent and existential issue. Like the pandemic, the climate crisis may seem remote, but its impact can manifest itself abruptly. Like the pandemic, the climate crisis is linked to the degradation of the natural environment. Like the pandemic, poor and vulnerable populations suffer most from climate shocks. Like the pandemic, ignoring the climate crisis involves massive financial risks. Like the pandemic, the climate crisis has no borders, and mitigation is less costly than containing the crisis once it has materialized. And like the pandemic, the climate crisis requires a forceful and globally coordinated response.

The pandemic-induced economic crisis does not change the fundamental climate challenge, or the proper response to it. Even a prolonged global recession would have only a modest impact on the stock of atmospheric greenhouse gas emissions. Therefore, raising the cost of emissions remains central to addressing the externality problem at the heart of climate change. And the policy action required also remains ambitious: For example, containing global warming to 2°C or less would require rapidly phasing in measures equivalent to a global tax of at least $75 per ton by 2030, whereas the current global average carbon price is $2 per ton.

Taking action to address climate change demands the mobilization of both public and private finance. In that context, it is critical to ensure that financial instability does not undermine the low-carbon transition. Financial firms and infrastructures, central banks, and financial regulators have essential roles to play: with determined action, the financial community can help society increase its chances of survival as it confronts the looming climate crisis.

Endnotes

How to Defuse the “Double Jeopardy” of Climate and Financial Risks in Developing Countries

Ceyla Pazarbasioglu

A s the COVID-19 pandemic was destroying lives and livelihoods across the world, Pacific Island nations faced a catastrophe of a more familiar kind. In April, Cyclone Harold cut a deadly swath through these nations, destroying homes, schools, and hospitals and dealing an additional blow to their efforts to manage the health, social, and economic effects of the pandemic.

These nations, in economic terms, were already some of the world’s most vulnerable—many of them heavily dependent on commodity exports and tourism and short on the fiscal buffers necessary to cope with setbacks. The combined effects of COVID-19 and Cyclone Harold are expected to result in a massive decline in national income in these countries. Disasters on this scale, moreover, tend to leave lasting scars, reducing human capital and lowering productivity for years. Pacific Island nations are hardly alone in confronting this “double jeopardy”—where climate risks and financial risks amplify one another and create a vicious circle of instability. About a third of countries in East Asia and the Pacific, Latin America and the Caribbean, South Asia, and sub-Saharan Africa face elevated risks from extreme weather—such as floods, storms, and droughts—and from macroeconomic, debt, and banking-sector risks. These cascading risks will further compound existing vulnerabilities, further weakening countries’ abilities to confront climate impacts.

Countries facing this double jeopardy typically have limited means to recover from the physical damage caused by extreme weather events. It is hard for them to promptly mobilize the necessary financial resources because their borrowing costs tend to be relatively high. Economic problems can spill over quickly to the financial system when physical damage reduces property and asset values for businesses and consumers. At the same time, governments attempting to build low-carbon economies must contend with the financial risks associated with changing investor risk assessments and valuations.

Yet there is a way forward for these countries. Governments can build financial resilience and capacity to deal with climate-related risks. In our
experience working with developing economies, policies should strive to achieve four goals:

1. **Strengthen macro-financial resilience.**
 As the public and financial sector play central roles in climate mitigation and adaptation efforts, measures to strengthen macro-financial systems are key for tackling the consequences of climate change. These include macro-economic, fiscal, monetary, and financial sector measures, such as adequate pricing of carbon emissions and well-designed disaster-risk financing strategies.

2. **Assess and disclose climate-related risks.**
 Climate change poses significant physical and transition risks, but efforts to assess these risks are in their infancy. Data gaps should be addressed, and risks should be transparently disclosed and incorporated into monitoring exercises, including macro-economic and financial stress tests.

3. **Incorporate impacts of climate change in growth diagnostics.**
 Climate-related risks to economic growth are significantly underestimated. Well-designed adaptation and mitigation efforts can have positive impacts on growth. This points to the importance of reflecting climate-related risks and mitigation and adaptation impacts in the assessment of countries’ growth prospects and the design of growth strategies.

4. **Promote green finance.**
 Green finance encompasses financial investments that have environmental objectives. Besides enhanced disclosure, green finance requires the development of widely recognized taxonomies, regulatory frameworks, and national strategies. This will create incentives for stakeholders to incorporate climate issues into their risk management and investment approaches, and it can encourage the creation of new financing instruments.

Support from the international community is crucial. The World Bank, together with partners, is working closely with vulnerable countries to address financial risks emanating from natural disasters and climate change. We are also helping clients leverage the power of the financial system to be a force for climate adaptation and mitigation.

Better financial risk management is at the heart of these efforts. The Financial Sector Assessment Program (FSAP), a joint effort of the World Bank and IMF, helps regulators and financial sector supervisors integrate climate risk into their oversight. These pilot assessments include identifying vulnerabilities with respect to financial-sector soundness and stability; evaluating the supervisory responses of banking, insurance, and capital market regulators; and identifying opportunities for green finance. We have also helped regulators set up stress testing for typhoon risk, and enabled some governments to adopt a similar approach to flood risk.

In developing countries, a lack of well-functioning insurance markets often exacerbates climate risks. Better developed insurance markets can contribute significantly to the resilience of the economy at large and may reduce the government’s fiscal burden in rebuilding from a disaster.

Longer-term technical assistance is also important. With the World Bank Group’s private sector arm, IFC, we have started a comprehensive program to help banks and institutional investors in Colombia offer more green financing. The program consists of four components: assessing climate risks in the banking sector; integrating sustainability factors into investment decisions; developing a taxonomy of economic activities; and stakeholder engagement and capacity building.

Dialogue among financial-sector stakeholders can also make a key difference. Central banks and supervisors have joined forces across the globe to address climate-related financial risks, as part of the Network for Greening the Financial System (NGFS). We also work closely with the IFC-led Sustainable Banking Network (SBN) and support the Coalition of Finance Ministers for Climate Action.

Over the past decade, the World Bank has provided financing and advisory services to promote financial resilience against natural disasters and crisis risks to over 60 countries, including over US$2.5 billion in contingent lines of credit and US$3.9 billion in market-based catastrophe-risk transactions. Our technical assistance has supported ministries of finance as well as helped financial and insurance regulators develop reliable risk models, and advanced financial analytics and market-based risk financing products needed to better understand, anticipate, and respond to natural disasters, climate change, and other complex crises in a timely and cost-efficient manner.

This work fits within a broader agenda for climate change. We believe fiscal-policy measures such as carbon taxation or phasing out fossil-fuel subsidies and standards have a key role to play—as do regulatory measures to increase energy efficiency.

These can be politically difficult reforms—requiring citizens to accept short-term pains in return for long-term gains. Yet we must tackle them head on. COVID-19 illustrates the steep costs of complacency. All countries should act now to defuse the double jeopardy of climate and financial risks. It is within our means to shift to a low-carbon economy without creating financial risks.
CEYLA PAZARBASIOGLU is Vice President for Equitable Growth, Finance and Institutions at the World Bank Group. In this role, she provides strategic leadership to the best expertise from the World Bank and International Finance Corporation to help developing countries build the foundations for inclusive and sustainable growth. She is a former Deputy Director, Monetary and Capital Markets, at the International Monetary Fund; and Vice President of the Banking Regulation and Supervision Agency, Turkey.

Op-ed

Financial Stability in the Age of Global and Systemic Ecological Risks (“Green Swans”)

Patrick Bolton, Morgan Després, Luiz Awazu Pereira da Silva, Frédéric Samama & Romain Svartzman

Central banks’ mandates of price and financial stability will increasingly face the risks posed by climate change and other global ecological challenges such as biodiversity loss. This suggests that central banks have a role to play in managing these risks. However, climate-related risks are characterized by radical uncertainty and the need to engage in a system-wide transition, which requires both independent action from multiple stakeholders and an unprecedented level of international coordination. Central banks’ interventions are therefore constrained by both the nature of our ecological predicament and by the need for structural change. The question regarding their role must then be reframed as follows: Given that structural transformation of the global economy is a prerequisite for financial and price stability, how can central banks contribute to the coordination needed to preserve the resilience of our Earth’s ecosystems?

Climate Change Adaptation and Mitigation as Global Challenges

The unprecedented challenges posed by climate change are well documented. Climate-related impacts, such as rising sea levels, droughts, floods, extreme weather events, and soil erosion, are projected to increase over time. They could lead to unbearable stresses on ecosystems and “untold suffering” for human beings, according to more than 11,000 scientists.

Through these impacts, climate change can generate geopolitical tensions and pose significant financial and economic stability problems. What is more, the worst consequences of climate change will likely be concentrated in low-income countries, potentially leading to the displacement of hundreds of millions of people and increasing global inequality, reversing the trends of income growth made over the past decades, and triggering new conflicts.

The authors of this essay are co-authors of “The green swan: central banking and financial stability in the age of climate change.” The views expressed are those of the authors and do not necessarily reflect those of their respective institutions.

Endnotes

But Green Swans have two additional features: (i) scientific evidence suggests that climate-related shocks are almost sure to occur (though the exact timing and impacts of these events remains highly uncertain); and (ii) they involve irreversible losses (financial, material, and the loss of human lives) that can pose an existential threat to humanity.

Importantly, Green Swans involve other ecological risks, such as those tied to the accelerating decline of the Earth’s biodiversity. For instance, the crisis caused by the pandemic of COVID-19 has been linked to the destruction of our natural habitats, which in turn is likely to facilitate the emergence of other pandemics in the future. Viewed from this perspective, the current crisis is the manifestation of a particular Green Swan event.

While avoiding these impacts seems a no-brainer, the hard reality is that a low-carbon transition also raises significant geopolitical issues (unless one puts all one’s faith in technologies such as geoengineering that would solve the problem). For instance, a move towards renewable energy could shift the balance of power between countries, reorder trade flows and global value chains (e.g., because of climate clubs among countries willing to implement adequate carbon prices), and even generate new conflicts related to access to minerals needed for renewables. Moreover, some countries (for instance those involved in the extraction of shale oil and tar sands) would need to rapidly discontinue some key carbon-intensive activities, which could generate important losses of revenue (although those could ultimately be compensated by employment and revenues in other sectors).

These patterns may partially explain why the principle of “common but differentiated responsibilities” enshrined in international climate negotiations remains largely ineffective. While many of the wealthiest countries committed to mobilize US$100 billion per year in climate financing to accelerate mitigation in developing countries, current pledges remain unfulfilled and this amount will in any case fall far short of what is necessary. In the meantime, the wealthiest 10 percent of individuals on the planet are responsible for about half of total CO2 emissions, while the bottom half of the population in terms of income emits just 10 percent.

What Role for Central Banks in Managing “Green Swans?”

Central banks and financial regulators now recognize that these patterns are a source of financial instability. The physical impacts of climate change could lead to much more disastrous and irreversible outcomes than the COVID-19 pandemic, while the transition to a low-carbon economy also raises significant risks. For instance, limiting global warming to less than 1.5°C or 2°C requires keeping a large proportion of existing fossil fuel reserves in the ground. These stranded assets could suddenly be written down and trigger a “climate Minsky moment”—a systemic crisis triggered by an abrupt change of sentiment regarding the ability to repay climate liabilities.

Climate-related risks taken together are best understood as “Green Swans” (see figure on page 98). Green Swans have similar features to Black Swans, in that they are ex ante largely unexpected rare events with severe consequences that are all too readily rationalized ex post.

But Green Swans have two additional features: (i) scientific evidence suggests that climate-related shocks are almost sure to occur (though the exact timing and impacts of these events remains highly uncertain); and (ii) they involve irreversible losses (financial, material, and the loss of human lives) that can pose an existential threat to humanity.

Importantly, Green Swans involve other ecological risks, such as those tied to the accelerating decline of the Earth’s biodiversity. For instance, the crisis caused by the pandemic of COVID-19 has been linked to the destruction of our natural habitats, which in turn is likely to facilitate the emergence of other pandemics in the future. Viewed from this perspective, the current crisis is the manifestation of a particular Green Swan event.

Given that climate change and other ecological challenges are a source of financial risks, it is within the mandate of central banks to safeguard the financial system against these risks. The central bank response cannot rely on traditional risk assessment models, which merely extrapolate historical trends and do not include the risks related to natural disasters (of rising magnitude and incidence) and to a system-wide transition (which has not yet occurred). Therefore, in order to better understand Green Swans, a methodological shift in macroeconomic and financial modeling is needed. For instance, focusing more on forward-looking scenario analysis and on non-equilibrium modeling can better represent uncertain transition dynamics.

But no single model will be able to account for the uncertainty and complexity of Green Swan
The central bank response cannot rely on traditional risk assessment models, which merely extrapolate historical trends and do not include the risks related to natural disasters (of rising magnitude and incidence) and to a system-wide transition (which has not yet occurred).

Chain reactions stemming from climate-related physical and transition risks

Level 1
- Major forces influencing each other with some possible disruptive moments
 - Ex: Level 1 example

Level 2
- Multiple lateral accelerations
 - Ex: accelerating migration

Level 3
- Multiple non-linear impacts
 - Ex: unexpected ban of nuclear plants in Germany

Level 4
- Multiple non-linear impacts
 - Ex: unexpected regulations on diesel cars in Europe

Source: Bolton et al. (2020)
policies; (ii) the promotion of long-termism and environmental values in the financial sector; (iii) the integration of sustainability accounting in national and corporate accounting frameworks; and (iv) the reform of the international monetary and financial system.

What Global Monetary and Financial Architecture to Preserve Climate and Financial Stability?

With regard to the fourth area, it is important to emphasize that climate stability is a global public good and that an equitable transition to a low-carbon economy will require an unprecedented level of international cooperation. As a first step, and especially in light of the COVID-19 pandemic, massive public investments will be needed. Multilateral development banks will have a critical role to play in this area. They can help coordinate national governments’ crisis mitigation public policies, prioritize emergency funding for the poorest countries, and ensure debt sustainability following the crisis.

But more is needed. Tackling the new global challenges posed by climate change demands a global joint governance of climate and financial stability, possibly including the creation of a new international agency that would: (i) provide financial and logistical support to countries facing a climate or ecological shock; and (ii) supervise and coordinate climate mitigation policies among member countries. Some analysts have also proposed adding a climate change mitigation mandate to existing international institutions such as the International Monetary Fund (IMF), as part of their responsibilities to manage the international monetary and financial system. In particular, proposals have been made to issue “green” Special Drawing Rights (SDRs) through the IMF to finance green funds. SDRs could be allocated to national and multilateral development banks and be pledged to finance the national commitments to reduce carbon emissions under the Paris Agreement.

As bold as they seem, these initiatives are essential to build a multilateral governance system capable of channeling savings from all parts of the world to finance the low-carbon transition. This new governance architecture would then facilitate the task of central banks, but the reverse may also be true. For instance, by joining forces among themselves with the creation of the NGFS (Network for Greening the Financial System), central banks have shown that international cooperation on climate change, in the spirit of the Bretton Woods order, is possible. This is what we need to address today’s global challenges.

PATRICK BOLTON is the Barbara and David Zalaznick Professor of Business at Columbia University and visiting Professor at Imperial College London. He is a Co-Director of the Center for Contracts and Economic Organization at the Columbia Law School, a past President of the American Finance Association, a Fellow of the Econometric Society (elected 1993), the American Academy of Arts and Sciences (elected 2009), and a Corresponding Fellow of the British Academy (elected 2013). His areas of interest are in contract theory, corporate finance, corporate governance, banking, sovereign debt, political economy, law and economics and sustainable investing. He has written a leading graduate textbook on Contract Theory with Mathias Dewatripont, MIT Press (2005) and among the books he has co-edited are Sovereign wealth funds and long-term investing, with Frédéric Samama and Joseph E Stiglitz, Columbia University Press (2011); and Coping with the climate crisis: mitigation policies and global coordination, with Rabah Arezki, Karim El Aynaoui and Maurice Obstfeld, Columbia University Press (2018).

LUIZ AWAZU PEREIRA DA SILVA is Deputy General Manager of the Bank for International Settlements. Prior to that, he was Deputy Governor at the Central Bank of Brazil, in charge of Economic Policy, International Affairs, and Financial Regulation. He also served as Deputy Finance Minister, in charge of International Affairs at the Ministry of Finance and as Chief Economist of the Ministry of Budget and Planning. He is a former Regional Country Director and Advisor to the Chief Economist at the World Bank and, in Japan, worked at the Institute of Fiscal and Monetary Policy of the Ministry of Finance and as Country Risk Director at the Japan Bank for International Cooperation (JBIC). He has published on development economics, macroeconomic modelling, and poverty reduction, and is the co-editor with François Bourguignon of The impact of macroeconomic policies on poverty and income distribution: macro-micro evaluation techniques and tools (Palgrave Macmillan/World Bank), and with Pierre-Richard Agénor, Integrated Inflation Targeting (BIS 2019).

MORGAN DESPRÉS is Deputy Head of the Financial Stability Department at the Banque de France and also serves as the Head of the Network for Greening the Financial System (NGFS) Secretariat. He joined the Banque de France in 2005 and served in the Payment and Settlement Systems Department and as Deputy Head of the Macropolicies Division. Other professional experience includes a secondment as Deputy Head of the Financial Stability Unit within the French Treasury Department and technical assistance missions for the IMF. Morgan holds an MBA from ESSEC business school, graduated from the Institut d’Etudes Politiques de Paris and studied at the Harvard Extension School.

101

102
FRÉDÉRIC SAMAMA is Head of Responsible Investment at Amundi. He is the founder of the SWF Research Initiative, co-editor of a book on long-term investing alongside Nobel Prize Laureate Joseph Stiglitz and Professor Patrick Bolton, and has published numerous papers on green finance. Formerly, he oversaw Corporate Equity Derivatives within Crédit Agricole Corporate Investment Banking in New York and Paris. During his tenure, he developed and implemented the first international leveraged employee share purchase program, a system now widely used among French companies. He has advised the French government in different areas, including employee investing mechanisms, market regulation, and climate finance, and has a long track record of innovation at the crossroads of finance and government policy. In recent years, he has focused on climate change with a mix of financial innovation, research and policymaking recommendations, advising central banks, sovereign wealth funds, and policymakers.

ROMAIN SVARTZMAN works as an economist on sustainable finance and climate-related risks at the Banque de France. He previously worked for the International Finance Corporation (World Bank Group) as an environmental and social consultant, and as an investor in clean technologies for a French venture capital firm. Romain completed his PhD in ecological macroeconomics at McGill University (Canada). He holds a master’s degree in Finance and International Business from the Institut d’Etudes Politiques de Paris (Sciences Po), as well as a degree in Economics and Law of Climate Change from FLACSO Argentina.

Endnotes

8 Thornhill, J. (2019, September 30). Technology can help save the planet, but it is not enough. Financial Times. https://www.ft.com/content/017fa975-8724-4f1c-9600-a7f08618bb4a
and-capabilities-cbdr-rc/
15 Gibson, A. (2020, April 2). While we fixate on coronavirus, Earth is hurtling towards a catastrophe worse than the dinosaur extinction. The Conversation. https://theconversation.com/while-we-fixate-on-coronavirus-earth-is-hurtling-towards-a-catastrophe-worse-than-the-dinosaur-extinction-148601
Climate Change and Financial Stability

An Interview with Selwin Hart,
Special Adviser to the UN Secretary-General on Climate Action & Financial Stability

There has been a surge in interest from companies in adopting sustainable business plans that are compatible with a 1.5°C future, yet with a few notable exceptions, markets and major financial institutions have yet to take climate change seriously. Major pensions funds and investments firms acknowledge that their portfolios are more aligned with a 3.5°C future.

Many investors continue to underestimate the risks of climate change and are still making short-sighted decisions to expand investment into carbon-intensive assets. One of the primary ways to break the link between greenhouse gas emissions and economic activity is to change the energy supply mix, transitioning from fossil fuels to renewable sources of energy.

This transition will require policies that steer nations towards carbon neutrality well before 2050. The Secretary-General has set six priority areas for climate action during the COVID-19 recovery phase including: investing in decent jobs; no bail-outs for polluting companies; abandoning perverse fossil fuel subsidies; ending investment in and construction of coal-fired power plants by 2020; taking climate risks and opportunities into account in all financial and policy decisions; increasing international cooperation; and ensuring a just transition that leaves nobody behind.

And if we don’t? We ignore these risks at our peril. Rising sea level and energy consumption will require major infrastructure investments in cities, but will cities continue to be able to raise money from municipal bonds? Will home mortgages still be available if lenders can’t estimate the impact of climate risk over such a long timeline, and if there is no viable market for flood or fire insurance in impacted areas? What happens to inflation, and in turn interest rates, if the cost of food climbs from drought and flooding? How can we model economic growth if emerging markets see their productivity decline due to extreme heat and other climate impacts?

Q: What steps can the foreign policy community take to address climate-related risks in this area?

In 2015 the world came together to adopt the Paris Agreement on climate change and the Sustainable Development Goals. We are not on track to achieve the goals of either.

International cooperation is fundamental to addressing climate change as it is truly a challenge that affects all countries—and no country can solve it on its own. Progress in one place can easily be offset by increased emissions in another.

But while some countries and companies have gotten the message that climate concerns must be part of their COVID-19 recovery plans, many have not. Recent reports show that in major emitting countries, recovery stimulus packages are spending twice as much on fossil fuels than on clean energy sources.

Implementation of the Paris Agreement requires full transparency and international cooperation. Developing countries require assistance to enable them to decarbonize their economies with clean, renewable energy, and to help build adaptation and resilience against a problem that is not of their making.

National action needs to be mirrored by actions abroad. Phasing out coal domestically is necessary and essential, but countries can’t stop there—they must also stop funding of coal abroad and actively offer funding for renewables instead.

Governments need to show that they are serious about honoring their national contributions under the Paris Agreement; they need to substantially increase their ambitions under their Nationally Determined Contributions. They also need to show that they are ready to meet their obligations under the Paris Agreement to ramp up financial support to developing countries.
Q: What role should central banks play in combating the climate crisis, and is there a need to adjust their mandate or the powers they possess?

For the role of central banks, I look to UN Special Envoy on Climate Finance Mark Carney, who, until recently, was the Governor of the Bank of England. According to Mr. Carney, a new and sustainable financial system is slowly, yet surely, being built that will provide funding for the initiatives and innovations of the private sector, which in turn has the potential to amplify the effectiveness of the climate policies of governments.1

“But the task is large, the window of opportunity is short, and the risks are existential,” he said, adding that “like virtually everything else in the response to climate change, the development of this new sustainable finance is not moving fast enough for the world to reach net zero.”

There are several key points that Mr. Carney makes about changing the financial landscape to fully bring climate risks and resilience into the heart of financial decision-making.

First, climate disclosure must become comprehensive, climate risk management must be transformed, and sustainable investing must go mainstream, using the framework provided by the Task Force on Climate-related Financial Disclosures—a comprehensive, practical and flexible framework for corporate disclosure of climate-related risks and opportunities.

Second, make these disclosures mandatory everywhere. “It’s time for every country to get involved because the world won’t get to net zero if the financial sector doesn’t know how our companies are responding,” said Mr. Carney. “In order to watch we must be able to see.”

In addition, the providers of capital—banks, insurers, asset managers—and those who supervise them all need to improve their understanding and management of climate-related financial risks. The changes in climate policies, new technologies, and growing physical risks will prompt reassessments of the values of virtually every financial asset, and firms that align their business models to the transition to a net zero world will be rewarded handsomely—while that those that fail to adapt will cease to exist.

Finally, financial markets increasingly recognize that sustainable investment is the new horizon that can bring enormous opportunities. To go mainstream, Mr. Carney said that sustainable investing must cover, catalyze, and support “all companies that are working to transition from brown to green.”

Q: How prepared is the financial system for regulatory shock and large investments becoming stranded assets—and what do regulators need to do to shore up the system?

It is increasingly clear that the world cannot afford to burn all of its fossil fuel reserves if we are to succeed in limiting climate change to sustainable, livable, levels. This raises the question of assets that will be abandoned well before their intended date of retirement and will not produce the expected returns. Already, coal mines are being closed as the price of coal becomes increasingly more expensive compared with renewable energy sources.

Losses due to stranded assets can imperil financial stability. According to Mr. Carney, a stress test is needed, and it is necessary to build a large coalition of central banks and supervisors to conduct these tests. “The Bank of England will become the first regulator to stress test its major banks and insurers against different climate pathways, including the catastrophic business-as-usual scenario,” said Mr. Carney. “Our stress test of the world’s leading international financial centre will show how major financial firms expect to adjust their business models, and what the collective impact of these responses could be on the wider economy.”

If estimates are even approximately correct, he said, “it would render the vast majority of reserves ‘stranded’—oil, gas and coal that will be literally unburnable without expensive carbon capture technology, which itself alters fossil fuel economics.”

Q: What is the role of insurance providers and regulators for setting price signals and helping to advance the transition to a more sustainable economy?

The insurance sector can supply expertise, money, and perspective that are crucial in helping society adjust to the reality of a transition to a sustainable economy. The sector, with assets over US$30 trillion, can help make decisive contributions to reduce the protection gap, financing resilient infrastructure or improving reporting, risk management, and return optimization across the financial sector.

Insurers understand the physical risks of climate change that are being felt across the globe; insured losses in 2018 were US$80 billion, double the inflation-adjusted average for the past 30 years.

In low and middle income countries, a lack of protection means that even greater costs are being borne by the uninsured. In 2017, the record US$140 billion of insured losses was eclipsed by an additional US$200 billion of uninsured losses. According to Mr. Carney, both sides of insurers’ balance sheets need to respond. On the liability side, the focus must be reducing the protection gap and supporting the resilience of households and companies to growing climate risks. And on the asset side, infrastructure investments will be essential. To transition to net zero, all countries need to step up their investments in sustainable energy. The reality of climate change also means that all countries, but particularly developing and emerging economies, will need to invest in new climate-resilient infrastructure in order to adapt to the new realities of a hotter and more volatile climate.

endeavor, and insurers’ ability to effectively grant or revoke permission for companies to operate affords them singular leverage in relation to curbing high-risk behaviors and encouraging financial resiliency. In 2019, 820 natural disasters around the globe caused overall losses of US$150 billion, of which only US$52 billion were insured. This widening protection gap, and the indiscriminate nature with which extreme weather events occur, could lead to a dramatic rise in global poverty levels unless addressed. Creating more access to insurance solutions can expedite recovery efforts to restore livelihoods and rebuild critical infrastructure so that people, communities, and economies can rebound.

Traditionally, policymakers have addressed climate change via regulatory means, like carbon taxes, cap-and-trade programs, and stricter emissions standards. From an insurance perspective, policymakers have worked with insurers in the promotion of premium rate relief for companies who practice responsible behavior, like utilizing eco-friendly manufacturing processes. This approach has proven effective and will be part of the solution to combat climate change for the foreseeable future. The next evolution in the utilization of insurance to combat climate change involves policies that encourage companies and insurers to participate in innovative insurance solutions. Future-proofing food supplies, rethinking insurance’s role in energy and infrastructure, and designing resilient infrastructure solutions that are affordable for multiple stakeholders are three key areas of innovation that policymakers should pursue alongside the insurance industry.

Future-proofing Food Supplies

Policymakers understand that a critical aspect of climate change is its impact on global food supplies and agriculture. Climate change has undercuts the reliability of the years of data and weather patterns farmers have traditionally depended on to plant and harvest their crops. Extreme weather events, dramatic fluctuations in precipitation, and heat patterns are having a detrimental impact on crop growth, livestock health, fisheries, and other related resources. The United Nations’ International Panel on Climate Change (IPCC) is forecasting a 2 to 6 percent decrease in global crop production every decade for the foreseeable future. While policymakers have implemented various types of crop insurance initiatives designed to help abate some of these risks for farmers, these programs utilize an outdated, retroactive risk modeling that does not contemplate climate change impacts, and provides funds for losses only once they have occurred. Such programs do nothing to meet the

Leverage the Insurance Industry to Drive Climate-Proof Development

As the global economy becomes increasingly interconnected, so too have the risks. A single disaster or event in one region can have severe implications felt halfway around the globe. No single risk illustrates this interconnectedness better than climate change. The increased frequency of extreme weather events and their growing intensity is affecting every facet of the world and humanity. Extreme weather events have created added strain on global food production, caused supply chain disruptions, and are constantly testing the endurance of global infrastructure as well as financial resiliency. Addressing climate change is a complex and daunting task that requires an international coordinated response from policymakers. To enact effective change, however, policymakers must do more than simply implement policies in a unilateral fashion; they must formulate public-private partnerships that can execute such actions. One key player that can help facilitate this, and has yet to be fully utilized, is the insurance industry. The insurance industry is uniquely positioned to drive a fundamental improvement of sustainability practices across the global economy through its vast financial assets, expertise, and influence. It touches virtually every sphere of human
Building for the New Normal: Impact on Energy and Infrastructure

Working towards cleaner, more efficient energy standards has long been an objective in the fight against climate change. In an interesting twist of fate, the fallout from COVID-19 has aided this task by raising the profile of clean energy projects and increasing their importance for large energy producers. For instance, in the aftermath of the pandemic, the French oil behemoth Total cut capital spending by more than 20 percent and eliminated share buybacks. However, the unit dubbed “new energies,” which included investments in alternative energy infrastructure such as wind and solar, was spared from budget cuts.

The pandemic lockdowns knocked the price of oil from above US$60 a barrel down towards $0.4, an unprecedented benchmark. Although negative oil prices were an anomaly related to futures contracts, and prices are slowly recovering as lockdowns end and OPEC cuts production until significant demand returns, the future of oil assets remains uncertain. Policymakers had been pressuring oil companies to diversify from these stranded assets to alternative sources well before the pandemic, but the unique slump in oil demand is a rare opportunity to accelerate these efforts.

As cheap oil dominates the headlines, policymakers must work even harder to ensure that clean energy investments like those undertaken by Total continue to proliferate. They can do this by:

- Increasing the number of new commercial and residential real estate developments required to have energy efficient systems installed, such as solar panels.
- Working with insurers to encourage insurance premium rebates to companies and residences that adopt energy efficient infrastructure improvements, such as the installation of solar panels and other alternative energy solutions.
- Working with insurers to expand their investments in renewable and clean energy vehicles via financial incentives (such as tax breaks). Examples of investments include MetLife’s ownership in a solar PV power plant in Texas, and Allianz having investments in wind farms and solar parks throughout Europe.
- Increasing the adoption of Feed-in tariffs, where homeowners are compensated for any unused solar energy that is returned to the power grid.
Easing restrictions placed on offshore wind farms.

While it is difficult to determine the lasting impacts of the pandemic on global travel, early indicators show some changes may be permanent, with lasting impacts on infrastructure maintenance at critical transportation hubs. As firms around the world have shifted to teleworking policies, travel has declined drastically, with air travel down more than 90 percent from this time last year. The International Air Transport Association (IATA) estimated that demand for air travel in 2021 will be 24 percent less than what it was in 2019, and not return to pre-pandemic levels until 2023. IATA’s most pessimistic recovery scenario projected a 41 percent decrease in demand by 2021, with a five to seven-year timeframe before returning to 2019 levels. This is fueled both by consumer fears and shifting corporate views on “essential business travel” needs, especially with increased video conferencing capabilities.

This reduced travel has helped to curb greenhouse emissions in the short term, but it has also halted key infrastructure improvements at airports and other transportation hubs. To keep infrastructure improvement projects on the agenda post-pandemic, policymakers can work with insurers to establish the types of incentives that encourage energy-efficient improvements to critical infrastructure like airports and ports, such as discounts on insurance premiums.

Policymakers need look no further than California as an example. The insurance commissioner for the state recently introduced the Climate Smart Insurance Products Database, a groundbreaking list of green insurance policies. Individuals and businesses alike can choose from hundreds of insurance policies that address climate risks, such as policies that factor green energy use in the discounting of insurance premiums.

Designing Affordable Resiliency

As the world’s population creeps towards 8.5 billion over the next decade, urbanization and development of megacities around the world is accelerating. This rapid urban development, however, has not fully accounted for the new risks introduced by climate change. The past few years has shown the impact of these new weather patterns—causing devastating floods across the United Kingdom and Indonesia, igniting powerful wildfires throughout Australia and the Amazon rainforest, and bringing record-breaking high temperatures to Siberia. Houston, the fourth largest city in the United States, has now seen three consecutive 1,000-year floods in the past two years. To put this in perspective, 1,000-year floods statistically have a 0.1 percent chance of happening in any given year. These types of floods not only cost billions in damages, but also displace thousands of people. Current city planning and construction has further exacerbated these weather events by limiting natural mitigation systems such as root systems, forestry, and other barriers that reduce flooding.

By working with policymakers, insurers could help guide a more resilient approach to the development of major cities. Policymakers must enact stronger guidelines for building codes, aligning with insurers’ risk models to limit losses. Encouraging developers to consider the new threat landscape that extreme weather events are creating, via measures like reduced insurance premiums, can drastically reduce the overall damage and loss of economic activity.
There is a school of thought, now backed by a growing body of evidence, that suggests that protecting nature’s boundaries is critical. This is particularly important in post-disaster reconstruction cases where questions of build back, build back better, or build back at all require consideration of nature’s lines of defense. Barrier reefs, for example, offer clear advantages in abating storm surges and coastal flooding, as do mangroves. Groups like Conservation International are exploring ways to leverage these natural defensive systems to reduce risks of flooding and property damage in collaboration with insurers. Their objective is to not only limit potential damage, but also work to establish greater access to insurance solutions in developing countries. By reducing the risk profile of property projects in developing countries, insurers can expand their risk appetite into regions they might have otherwise deemed too risky. This can be encouraged with the support of policymakers enforcing these types of “natural defense” building codes.

Integrating these natural defenses into man-made projects is not the only way to leverage the protection they provide. In many places around the world, natural assets act as the primary barrier against natural disasters and extreme weather events. Coral reefs, mangroves, wetlands, and forests can often minimize the damage caused by these events near metropolitan areas. It is equally important to protect these natural assets, much like property developments are protected.

The effects of human development and natural degradation (such as wind, rain, and erosion) takes its toll on these natural barriers, rendering them less effective over time. Fortunately, a select number of pioneering insurers have developed highly bespoke products to insure nature’s assets. One of the first, and most notable projects, was an insurance policy designed to protect the Mesoamerican Reef in the Caribbean Sea. By quantifying the economic impact of potential damages and lost GDP that would be incurred should the reef cease to exist, insurers were able to develop an insurance policy protecting this asset. The policy would pay for the maintenance, revitalization, and repair efforts needed if the reef sustained any damage. While these types of customized insurance solutions are uncommon, it is imperative for policymakers to encourage more of these solutions into their broader strategy for fighting climate change. Working in collaboration with policymakers and the private sector, insurers can help establish added layers of financial resources that will not just maintain natural assets, but also help reduce damages and protect economic interests while building more resilient communities.

This approach allows for both proactive regulatory measures and revitalization efforts to work in unison. Multilateral organizations like the World Bank have also developed and promoted sovereign insurance funds to address these types of complex, large scale risks with insurance funds, working directly with sovereign governments. However, there is greater scope to promote this approach, e.g. by involving the participation of private sector insurers and working closer with policymakers to establish subsidiaries. Doing so would both encourage governments to offset potential losses from their balance sheets and enable private sector participation in these types of innovative risk transfer solutions.

Aligning insurance underwriting requirements and regulations, via policies that allow insurers to influence buying behaviors, further encourages the proliferation of these innovative solutions. The requirement to not only keep natural protective barriers intact as regions become developed, but also mandating the ongoing maintenance of such natural barriers as part of the insurance policy, will have a lasting impact in terms of limiting potential economic losses and damages from extreme weather events. This is akin to the practices employed by insurers and regulators during periods of urbanization in the late 19th century. When large cities, using wood as the dominant construction material, expanded along with the adoption of electricity, stricter building codes were required as a public safety measure. This served a dual purpose from insurers’ perspective: stricter building codes and fire prevention measures enabled insurers to both reduce damages and contain losses in highly urbanized environments.

Regulation and Public-Private Partnerships

Public-private partnerships are key to supporting initiatives that combat climate change. Last summer, the Bank of England’s Prudential Regulation Authority (PRA) stated that it would work with United Kingdom insurers to determine how climate change will affect their finances. Given the impact climate change has on insurance claims globally, the PRA is wise to investigate how climate change will affect insurers’ balance sheets as it will have a direct impact on the bank’s financial health. California’s insurance regulator has followed a similar posture, asking insurers operating in the state to conduct verifiable climate stress tests on their balance sheets to not only identify stranded assets exposed to climate change, but also recalculate their liabilities. Policymakers must work with insurers globally to include climate change impacts into insurance underwriting models, compelling more businesses to make climate-sensitive changes to their operations in order to secure favorable premiums or coverage in the first place. Some insurers have taken steps in this direction. The insurance giant Chubb says it will no longer underwrite risks related to the construction and operation of new coal-fired plants. (Exceptions to the policy will be considered until 2022 in regions that do not have practical near-term alternative energy sources and taking into account the insured’s commitment to reduce coal dependence.)

However, while some carriers like Chubb are making strides to limit their carbon footprints
and wield their investment dollars to fight climate change, it is not the industry standard. Encouraging more insurance carriers to adopt this mindset and aligning shared interests would not only drive effective climate risk reduction, but also propel insurers to expand the access of their products to more emerging markets, creating broader global resiliency. The Sustainable Insurance Forum (SIF) is one such group that is gaining momentum with this effort. SIF is a global network of insurance regulators working on the sustainability issues confronting the insurance industry, and it is influencing regulation aimed at reducing the impact of climate change. The International Chamber of Commerce (ICC) is an important element of the public-private partnership needed on a global scale. The ICC has launched its Climate Coalition, a global network of over 45 million businesses that convene on a regional level to devise solutions aimed at reducing climate change’s impact—it is a type of marketplace, just as Lloyd’s is the marketplace through which insurance buyers and sellers meet. The word “public-private partnership” is used casually, but the ICC’s Climate Coalition is a global resource where this partnership has the chance to create public-private partnership models that can be scalable globally. Climate change poses a global threat that requires a multi-faceted, international coalition to help change its trajectory. As governments seek to implement new guidelines and goals for how to fight its impact, they would do well to recognize that insurers can play an important role—through data sharing and financial tools that equip countries with additional funds and resources needed to rebound quickly from disasters linked to climate change. Policymakers must encourage insurers to expand their market access, bringing sophisticated risk transfer solutions to both advanced economies and those throughout the developing world. With an aligned agenda, this type of public-private partnership can affect material change and build greater financial resiliency while navigating the new risk landscape shaped by climate change.

LES WILLIAMS is the Co-founder and Chief Revenue Officer of Risk Cooperative, where he leads business development and sales initiatives. He works with clients to help develop risk mitigation strategies and provides insurance portfolio management. He has built a career leading business development at blue chip firms such as Ford Motor Company, IBM, and JLL. Mr. Williams is a dual-licensed insurance broker, a Certified Risk Manager (CRM) and was recognized as a 2020 Power Broker in Risk & Insurance magazine. He is a member of the Cybersecurity Strategic Council for the Private Directors Association (PDA). He is an alumnus of the University of Virginia, where he received a Bachelor of Science in Mechanical Engineering, and holds an MBA from Harvard Business School, where he served as Co-President of the student body. He serves as a trustee for the UVA Alumni Association and is a member of the UVA Alumni Association Board of Managers.

ANDRES FRANZETTI is the Co-founder and Chief Executive Officer of Risk Cooperative, where he leads overall strategy execution and business operations. As a dual-licensed insurance broker and Certified Risk Manager (CRM), Andres specializes in helping multinational organizations address complex risks to increase their overall resiliency. Mr. Franzetti has experience across the full risk spectrum and works with organizations to address a myriad of risks, ranging from the de-risking of capital investments and overseas investments, to helping organizations build robust enterprise risk management frameworks. He is a recognized thought leader in the risk and cybersecurity domain and serves as an adjunct fellow for the American Security Project, a think-tank founded by former secretaries John Kerry and Chuck Hagel. Mr. Franzetti has spent more than 10 years in the financial services and advisory space. He is fluent in Spanish, conversant in Italian and holds a BS from the University of Colorado at Boulder in journalism, advertising and marketing.

Endnotes
The world’s reliance on fossil fuels for energy has had geopolitical implications of one sort or another since humans first started burning coal several thousand years ago. In modern times, major powers’ need for oil and gas to fuel their economies and armies contributed to the spread of colonialism in the 19th and early 20th centuries, Japan’s 1941 attack on Pearl Harbor, the 1967 and 1974 OPEC oil embargos (and subsequent global recessions), the 1990 Iraqi invasion of Kuwait, and the U.S. invasions of Iraq in 1991 and 2003, to name just a few of the major world developments that resulted at least in part from the world’s growing thirst for energy. Today, scholars and practitioners argue that the changes to the climate that result from this energy use is accelerating rising sea levels and the frequency and severity of droughts, fires, and mega storms—trends they predict could undermine governments, generate destabilizing refugee flows, and ultimately lead to tensions or even resource conflicts among states.

Less attention has been paid, however, to the potential geopolitical consequences of the opposite scenario—a decrease in reliance on fossil fuels. But that could prove shortsighted, because the policy changes required to avoid climate catastrophe—the elimination of oil, coal, and gas as primary energy sources and their replacement with renewables—could have as much an impact on geopolitics as the need for those sources had in the first place. The reduction in global energy use and emissions associated with the coronavirus pandemic may make this seem like a hypothetical or long-term problem, but rather than solving the climate crisis, the pandemic has actually underscored its depth. The fact that it took an almost unprecedented global economic shutdown to reduce emissions to levels barely consistent with the 2015 Paris climate commitments underscores the need for far more dramatic policy action than was previously underway.

Strategists rightly focus on the geopolitical consequences of climate change. The consequences of action to stop it could be just as profound.

Philip H. Gordon
If countries do reduce their reliance on fossil fuels, how could that transform the world? At least three likely trends are worth considering:

Political instability in oil-dependent states. The shift to a decarbonized world—in which global reliance on fossil fuels for energy production is dramatically reduced and virtually all remaining carbon dioxide emissions are captured, stored, utilized, or compensated—will have a major impact on the political systems of oil and gas producing states. According to the International Energy Agency, those states could lose US$7 trillion in revenues by 2040. Countries that rely on oil revenues for large shares of government revenue include Libya (96%), Iraq (89%), Kuwait (70%), Nigeria (65%), Saudi Arabia (61%), Venezuela (50%), Russia (40%), UAE (46%), and Iran (29%). Declining oil revenues will oblige these countries to cut subsidies (including for utilities such as electricity and water), raise taxes, and in many cases diminish their reliance on expatriate workers, forcing citizens to take menial jobs they are not used to doing. The world’s leading oil exporter, Saudi Arabia, is particularly vulnerable: a booming youth population and the need to create millions of jobs will require deficit spending of up to US$100 billion per year, eroding reserves that could be exhausted within just a few years. Russia, too, would lose considerable income in a decarbonized world, which could lead its government to become even more repressive to hold its grip on power. The potential upside of such changes is that these states will be compelled to reform their economies and invest in education, industry, human capital, and other non-energy sectors, as Riyadh is seeking to do in its Vision 2030 plan. But such transitions are difficult and disruptive, and could also be a source of domestic instability, as citizens used to an implicit social contract with their government—security and prosperity in exchange for loyalty—find governments unable to uphold their end of the bargain.

U.S. disengagement from the Middle East. Declining U.S.—and global—dependence on oil from the Middle East will likely accelerate U.S. disengagement from the region. After the failure of President George W. Bush’s efforts to “transform” the Middle East in part through the invasion of Iraq, President Barack Obama sought gradually to “pivot” away from the region, in part due to the diminishing U.S. need for energy imports from the region. President Donald Trump has taken that view to an extreme, boasting about American energy “independence” and claiming previous presidents had wasted US$7 trillion trying to stabilize a region allegedly no longer a vital interest of the United States. A growing number of Americans agree with former top official Martin Indyk, who recently asserted in the *Wall Street Journal* that the Middle East just “isn’t worth it anymore,” in large part because “the United States no longer relies on imported petroleum.” The strategic importance of American energy “independence,” of course, can be exaggerated, because even if the United States were to become energy independent, it still would be heavily dependent on imported natural gas and would require large investments to develop these new supplies. What is certain, however, is that decarbonization—whatever it happens—will have a profound impact on world politics, in predictable and unpredictable ways.
It is easy to imagine plenty of other geopolitical developments beyond the three listed above, in strains from the transatlantic relationship to global competition for clean-energy jobs. What is certain, however, is that decarbonization—whenever it happens—will have a profound impact on world politics, in predictable and unpredictable ways. To adapt, governments around the world will have to take into account the geopolitical consequences of their climate policies. This will mean incorporating geopolitical impact assessments into intelligence assessments, bureaucratic adjustments that elevate climate change to the same level as more traditional national security concerns, and developing diplomatic approaches designed to mitigate the negative impact of decarbonization on other states and the relations between them. The world’s gradual addiction to fossil fuels transformed international relations over the past century and more. Leaders in all countries must start thinking now about the political consequences of withdrawing from that addiction.

Endnotes

7 International Energy Agency. (2020, April 3). Global energy demand to plunge this year as a result of the biggest shock since the Second World War
Small States and Climate Change: The Case of Qatar

H.E. Lolwah R Al-Khater

Climate change is posing increasingly formidable challenges to all humankind and has been identified as the most pressing global environmental problem, with potentially catastrophic consequences for human development. Today, the focus is on strategies for mitigation and adaptation, involving national action and international cooperation.

It’s a problem with unique characteristics. It is a global challenge that necessitates collective solutions. Further, it is a long-term problem with cumulative outcomes. Addressing it is a cross-generational, cross-border exercise. The current generation cannot solve the problem alone, but it has the responsibility to take urgent action on behalf of posterity.

The Challenge of Decarbonization

Interestingly, the key pillar of the response to climate change—decarbonization—will also be a major force that will change the power and influence of regions and states.

Some nations may require support as the global decarbonization effort accelerates. The decline in the use of fossil fuels may profoundly destabilize countries that have not prepared their economies for the transition. In countries with weak governance, reduced revenue could create political instability, and increased fragility in fossil-exporting countries can have strong effects beyond the respective regions.

The development of clean energy technology, meanwhile, could also result in the technological dominance of a handful of nations. If a small number of countries and companies dominate clean energy technology, concentration could stifle innovation and suppress competition. Countries that do not develop domestic clean energy sources and technologies will remain vulnerable to foreign suppliers.

Further, decarbonization is by no means resource-neutral. Scaling up low-carbon technologies creates greater demand for certain metals, for example. This may give rise to geopolitical dynamics similar to those experienced in the modern economy.

Just as fossil fuels have shaped the geopolitical map over the past 200 years—altering international relations, affecting political alliances, and informing national defense strategies—decarbonization and the global transition to renewable energy sources will have profound consequences and alter the international geopolitical landscape. It is therefore important for the world’s superpowers to play an essential role when it comes to leading the initiative against climate change. In order to accelerate the healing, the biggest contributors to the problem to start must be the biggest contributors to the healing.

The Qatari Approach

As a small nation, our contribution is limited. However, as both a producer of fossil fuels and a country especially threatened by sea-level rise, we are very attuned to the challenges and potential benefits of decarbonization.

At the UN Climate Action Summit 2019, His Highness the Amir of Qatar stated, “The phenomenon of climate change is undoubtedly one of the serious challenges of our time. It is a problem that is continuously exacerbating and causing many problems which intertwine in their economic, environmental and social dimensions and have very serious negative repercussions on all forms of life including human life and on both developed and developing countries alike, especially on the tracks of the sustainable development which all peoples aspire to.”

To ensure commitment across government agencies and overcome institutional rivalry and inertia, there must be high-level political engagement to address climate change. In some countries, the responsibility for sustainable development issues is given to environmental ministries and departments—which tend to be under-resourced and insufficiently influential in government—thus hindering the necessary process of cross-sector policy integration. In Qatar, the Qatar National Vision 2030 names Environmental Development as one of its four main pillars, aiming to manage rapid domestic expansion to ensure harmony among the priorities of economic growth, social development, and environmental protection.

Although climate change is a global problem, its impacts will vary. Small states and less developed states often stand on the frontline of climate change and bear its burden. Qatar lacks arable land and water resources for the development of carbon sinks, forests, and green areas and is therefore especially vulnerable to global warming’s impacts. If sea levels rise, coastlines and marine life will be affected, land degradation will occur, and freshwater levels will fall. If temperatures rise, rising underground water salinity and falling freshwater levels will threaten water security and reduce the efficiency of the region’s vital desalination plants. Qatar is among the 10 countries that would be most impacted by sea level rise in terms of percentage of land area and wetlands affected.

In addressing the challenge, all countries, including Qatar, need to reconcile multiple priorities, from economic growth to environmental management to human and social development. For Qatar, as a consumer and key producer of fossil fuels, these priorities can at times be conflicting, especially against a backdrop of increasing local and global demand for energy.
A holistic and integrated approach is essential to address the range of environmental, economic, social, educational, and behavioral issues involved.

Qatar is actively working toward the management of risks associated with climate change. There are a number of significant and positive developments:

- Qatar is involved in several initiatives to this end:
 - In 2012, Qatar joined a consortium of founding member countries to establish the Global Green Growth Institute (GGGI). The Institute provides developing countries with the tools to build institutional capacity and develop green growth policy, strengthen peer learning and knowledge sharing, and engage private investors and public donors. Qatar’s disbursement of $10 million toward the GGGI has enabled direct work to be conducted on sustainable energy, water and sanitation, sustainable landscapes, and green cities.
 - One-third of the world’s population lives in drylands, which make up approximately 40 percent of the Earth’s land surface. Drylands face many environmental challenges, including water scarcity, temperature extremes, droughts, and floods. At the UN General Assembly in 2013, His Highness the Amir of Qatar described the newly created Global Dryland Alliance (GDA), an organization of dryland countries now headquartered in Doha, as “an initiative created to establish an international organization to face food insecurity consequences and negative environmental and economic impacts associated with climate change.” GDA also offers its members mutual assistance in times of extraordinary need such as national or manmade disasters.
 - In 2019, Qatar made a $20 million contribution to the UNDP Accelerator Labs network in 60 developing countries to tackle the world’s most pressing sustainable development challenges.
 - Also in 2019, His Highness the Amir of Qatar announced a contribution of $100 million to support small island developing states and the least developed countries in dealing with climate change, natural hazards, and environmental challenges. This support is consistent with the UN priority of “preserving tangible and intangible cultural heritage and promoting culture for island sustainable development.”

The State of Qatar will continue to promote international cooperation and action to achieve inclusive and sustainable development in order to meet the challenges of climate change.

Qatar is actively working toward the management of risks associated with climate change. There are a number of significant and positive developments:

- Qatar, as the host nation for FIFA World Cup 2022, is committed to organizing an environmental-friendly tournament and the first carbon-neutral tournament through the use of solar-powered stadiums and the use of cooling and lighting technology that is water- and energy-saving.

- In October 2019, Qatar announced the commissioning of a carbon storage plant, the largest of its kind in the region. It aims to capture over five million tons of CO2 per year from Qatar’s LNG industry by 2025.

- In March 2019, during the seventh International Agricultural Exhibition and the first Qatar International Environmental Exhibition, Qatar announced an initiative to plant one million trees by 2021 in order to enhance biological diversity, improve air quality, and reduce the country’s carbon footprint.

- The Qatar Investment Authority is a founding member of the “One Planet” Global Sovereign Wealth Fund, which has been established to promote green investments and accelerate efforts to consider environmental issues in the investment sector and management of sovereign wealth funds. Zero-emission investments represent 44 percent of the fund’s infrastructure projects.

Education and Adaptation

Qatar also recognizes education as a key element in addressing climate change. A highly skilled workforce is required to plan, manage, and execute the transition to a diversified and competitive economy away from oil and gas, and to plan and implement adaptation measures, as well as the corresponding transitions of infrastructure. Qatar’s educational system is focused on preparing students to collaboratively address the complexity of our pressing environmental challenges.

Changes in global markets will create new opportunities for Qatar in emerging fields, such as emission reduction approaches, energy efficient technologies, green buildings, agricultural management in arid regions, innovative education, and financing of low carbon activities. Qatar is motivated by good global citizenship to support adaptation in developing countries through increased support for low-carbon power generation.

Qatar also recognizes education as a key element in addressing climate change. A highly skilled workforce is required to plan, manage, and execute the transition to a diversified and competitive economy away from oil and gas, and to plan and implement adaptation measures, as well as the corresponding transitions of infrastructure. Qatar’s educational system is focused on preparing students to collaboratively address the complexity of our pressing environmental challenges.

Changes in global markets will create new opportunities for Qatar in emerging fields, such as emission reduction approaches, energy efficient technologies, green buildings, agricultural management in arid regions, innovative education, and financing of low carbon activities. Qatar is motivated by good global citizenship to support adaptation in developing countries through increased support for low-carbon power generation.

Qatar is involved in several initiatives to this end:

- In 2012, Qatar joined a consortium of founding member countries to establish the Global Green Growth Institute (GGGI). The Institute provides developing countries with the tools to build institutional capacity and develop green growth policy, strengthen peer learning and knowledge sharing, and engage private investors and public donors. Qatar’s disbursement of $10 million toward the GGGI has enabled direct work to be conducted on sustainable energy, water and sanitation, sustainable landscapes, and green cities.

- One-third of the world’s population lives in drylands, which make up approximately 40 percent of the Earth’s land surface. Drylands face many environmental challenges, including water scarcity, temperature extremes, droughts, and floods. At the UN General Assembly in 2013, His Highness the Amir of Qatar described the newly created Global Dryland Alliance (GDA), an organization of dryland countries now headquartered in Doha, as “an initiative created to establish an international organization to face food insecurity consequences and negative environmental and economic impacts associated with climate change.” GDA also offers its members mutual assistance in times of extraordinary need such as national or manmade disasters.

- In 2019, Qatar made a $20 million contribution to the UNDP Accelerator Labs network in 60 developing countries to tackle the world’s most pressing sustainable development challenges.

- Also in 2019, His Highness the Amir of Qatar announced a contribution of $100 million to support small island developing states and the least developed countries in dealing with climate change, natural hazards, and environmental challenges. This support is consistent with the UN priority of “preserving tangible and intangible cultural heritage and promoting culture for island sustainable development.”

The State of Qatar will continue to promote international cooperation and action to achieve inclusive and sustainable development in order to meet the challenges of climate change.

- Qatar, as the host nation for FIFA World Cup 2022, is committed to organizing an environmental-friendly tournament and the first carbon-neutral tournament through the use of solar-powered stadiums and the use of cooling and lighting technology that is water- and energy-saving.

- In October 2019, Qatar announced the commissioning of a carbon storage plant, the largest of its kind in the region. It aims to capture over five million tons of CO2 per year from Qatar’s LNG industry by 2025.

- In March 2019, during the seventh International Agricultural Exhibition and the first Qatar International Environmental Exhibition, Qatar announced an initiative to plant one million trees by 2021 in order to enhance biological diversity, improve air quality, and reduce the country’s carbon footprint.

- The Qatar Investment Authority is a founding member of the “One Planet” Global Sovereign Wealth Fund, which has been established to promote green investments and accelerate efforts to consider environmental issues in the investment sector and management of sovereign wealth funds. Zero-emission investments represent 44 percent of the fund’s infrastructure projects.

Education and Adaptation

Qatar also recognizes education as a key element in addressing climate change. A highly skilled workforce is required to plan, manage, and execute the transition to a diversified and competitive economy away from oil and gas, and to plan and implement adaptation measures, as well as the corresponding transitions of infrastructure. Qatar’s educational system is focused on preparing students to collaboratively address the complexity of our pressing environmental challenges.

Changes in global markets will create new opportunities for Qatar in emerging fields, such as emission reduction approaches, energy efficient technologies, green buildings, agricultural management in arid regions, innovative education, and financing of low carbon activities. Qatar is motivated by good global citizenship to support adaptation in developing countries through increased support for low-carbon power generation.

Qatar is involved in several initiatives to this end:

- In 2012, Qatar joined a consortium of founding member countries to establish the Global Green Growth Institute (GGGI). The Institute provides developing countries with the tools to build institutional capacity and develop green growth policy, strengthen peer learning and knowledge sharing, and engage private investors and public donors. Qatar’s disbursement of $10 million toward the GGGI has enabled direct work to be conducted on sustainable energy, water and sanitation, sustainable landscapes, and green cities.

- One-third of the world’s population lives in drylands, which make up approximately 40 percent of the Earth’s land surface. Drylands face many environmental challenges, including water scarcity, temperature extremes, droughts, and floods. At the UN General Assembly in 2013, His Highness the Amir of Qatar described the newly created Global Dryland Alliance (GDA), an organization of dryland countries now headquartered in Doha, as “an initiative created to establish an international organization to face food insecurity consequences and negative environmental and economic impacts associated with climate change.” GDA also offers its members mutual assistance in times of extraordinary need such as national or manmade disasters.

- In 2019, Qatar made a $20 million contribution to the UNDP Accelerator Labs network in 60 developing countries to tackle the world’s most pressing sustainable development challenges.

- Also in 2019, His Highness the Amir of Qatar announced a contribution of $100 million to support small island developing states and the least developed countries in dealing with climate change, natural hazards, and environmental challenges. This support is consistent with the UN priority of “preserving tangible and intangible cultural heritage and promoting culture for island sustainable development.”

The State of Qatar will continue to promote international cooperation and action to achieve inclusive and sustainable development in order to meet the challenges of climate change.
Global efforts to combat climate change and to decarbonize the world economy will have a tremendous impact on geopolitics and foreign policy. Climate discussion itself creates leaders and outsiders: countries that resist this global transition away from carbon are losing credibility, whereas those leaders promoting a climate agenda are gaining stronger positions in the international arena and using carbon restrictions to help reshape the rules of international trade and relations between different economies (like with EU ambition to introduce cost-benefit analysis and other restrictions on carbon-intensive imports). This dynamic will be at work despite the economic decline caused by COVID-19. There are also some strong sector-specific implications related primarily to the energy sector, the biggest carbon emitter.

According to the UN’s Emissions Gap Report 2019, fossil CO2 emissions from energy use and industry dominate total greenhouse gas (GHG) emissions, making fossil fuels the primary target for reduction. Many approaches have already been developed to move towards zero-carbon development pathways: energy efficiency; massive deployment of renewable energy for electrification; coal phase-out for rapid decarbonization of the energy system; decarbonizing transport with electric vehicles; hydrogen and other alternative fuels; decarbonizing energy-intensive industries through recycling; materials substitution and dematerialization; deployment of carbon capture, utilization, and storage; and fundamental transitions in the industrial process itself. Implementing these measures will affect the geopolitical positions of the hydrocarbon producing and importing countries, as well as the positions of countries which are not reserve holders but technological leaders in new energy. Energy superpowers’ leverage in this world of energy transition will be decreasing dramatically, together with their resource tent. Their comparative negotiating power is already changing, resulting in a profound reconfiguration of the global energy market landscape.

More Inventory than Customers

Russia is one of the more glaring examples of the potential losers in this geopolitical transformation. Indeed, countries like Russia, heavily dependent on hydrocarbon export revenues, will need to adapt their foreign policy to a world economy less reliant on their supplies. Hydrocarbon exports will no longer be a bargaining chip in international negotiations, and “geopolitical” energy projects (like many gas pipelines) will not be able to provide additional geopolitical arguments and power to the reserve holders.

The recent turmoil on the global oil and gas markets—which began when a production agreement between Russia and Saudi Arabia collapsed and became much more serious due to the COVID-19 lockdowns—was a sort of stress-test for all hydrocarbon exporting economies. The shrinking demand and fierce competition has led to an unprecedented drop in the oil and gas revenues for producing nations and significantly destabilized their economies. Given the inevitable path of the energy transition, this episode has illustrated in a couple of months what will happen to the oil and gas exporters over the next decade or so as the world approaches peak oil demand. The Russian Federation, for instance, faces the equivalent of a 50 percent loss in expected energy export revenues (as gas prices are halving and oil prices reducing by one third), while volumes of Russian exports of oil, gas, and coal are decreasing by 20–25 percent. For the national budget, this decline means a sharp fall in income of about 25 percent, just as the public and business are in most need of state support.

This is a real wake up call for the resource-rich countries. Fossil-fuel exporters that refuse to accept the energy transition are most exposed to decarbonization and least resilient to its economic effects. So far Russia, which ranks fourth in the world for primary energy consumption and carbon dioxide emissions and third in global primary energy production, has adhered to a strategy of “business as usual.” Huge new investments were made during the last decade in new expensive infrastructure for hydrocarbon exports—not only to the traditional European markets (“Turk Stream,” NS, and NS2) but also to the North-East Asia (ESPO, “Power of Siberia”), which Russian leadership regards as the most promising market for Russian oil and gas. Energy exports are critical for the state budget, for the key energy companies, and for many regions in the country that rely strongly on hydrocarbon revenues. But the changing global environment and the decarbonization agenda pose an existential threat to all key Russian stakeholders, challenging the very sustainability of the economic and political system in the country. In 2016, according to the OECD, oil and gas revenues accounted for 36 percent of the country’s federal budget, and Russia’s main export market, the EU, is working fast to reduce its imports.

Although Russia joined the Paris Agreement in September 2019, domestic decarbonization of the energy sector is not yet on the agenda—a skeptical attitude about the problem of global climate change prevails among stakeholders. GDP energy intensity remains high, constrained by relatively low energy prices and high capital costs. The share of solar and wind energy in the Russian energy balance is insignificant.
Against the background of excessive and extremely cheap hydrocarbon supply, importing country governments are now moving to introduce the long-discussed Carbon Border Adjustment Mechanism—the European Commission will put forward its proposal for one in 2021. This duty would mean additional costs for some carbon-intensive imported goods. It is intended to eliminate the competitive advantage currently enjoyed by countries that export to regions with tough eco-standards, where local industry faces higher costs. This is another disruption for hydrocarbons, metallurgy, and chemical industries. At the same time, oil market volatility has aggravated skepticism among investors, who even before the crisis had shifted massively from fossil fuel assets to low carbon and energy efficient projects.

Demand for energy will gradually recover in the wake of the COVID-19 lockdowns. But there are two trajectories for this recovery: the traditional one and that of an accelerated energy transition. In the first scenario, spurred by low oil prices, hydrocarbon demand will recover quickly and markets will inevitably be exposed to a deep investment gap, which will result in a new price hike. Rising hydrocarbon prices, in their turn, will once again stimulate interest in alternative energy sources and energy efficiency.

In the accelerated energy transition scenario, massive state support will be channeled into a green recovery. The EU has taken a step in this direction with a pledge to spend 30 percent of its €18 trillion budget from 2021-2027 on climate action. Such state support will advantage the industries competing with the oil and gas sector, creating pressure for those dependent on demand for fossil fuels. In short, importing countries have every opportunity to emerge from the crisis with transformed energy systems, strict carbon footprint limitations on imported raw materials, and irreversibly curtailed demand for hydrocarbons.

Going Down with the Ship?

An energy transition appears unavoidable; the only question is the speed of the process. Despite this, Russian regulations assiduously ignore the trend towards decarbonization. Despite this, Russian regulations assiduously ignore the trend towards decarbonization. Combatting climate change is not mentioned in the Goals and Strategic Objectives of the Russian Federation to 2024. The Energy Security Doctrine defines “increasing international efforts to implement climate policies and accelerate transition to a green economy” as an external political challenge to Russia’s energy security. The term “energy transition” and related external market changes are not mentioned in the text of the new “Energy Strategy for the Period to 2035,” which envisages a significant scaling-up of coal, oil, and gas exports.

Strategically, however, the Russian economy currently has an opportunity to make fundamental reforms that could provide the country with a long-term trajectory to a different, more innovative development track. In Russia, energy is utilized very inefficiently, particularly in heating. This problem has been discussed for several decades. Today might be the ideal time for measures that have long been urgent, namely support for energy efficiency projects. A breakthrough in this sphere would not only strengthen global competitiveness dramatically and reduce the global carbon footprint but also create a significant number of new localized production facilities and jobs.

The promotion of high-tech sectors could focus on a program of overall energy efficiency enhancement, localization of services and equipment production, promotion of renewable energy systems, establishment of a state fund for targeted investments in technology with low greenhouse gas emissions (hydrogen, etc.), and provide an opportunity to exit the crisis with a better, more modern structure for the economy. This means new highly qualified jobs, development of high value-added production, and faster growth, instead of catching-up. And it does not require eliminating hydrocarbons. A transformed oil and gas sector could continue to play the role of the national economic driver, while aligning with the green agenda perfectly well. However, this requires new solutions (e.g., carbon capture, storage, and utilization technologies, methane emission control, hydrogen, use of the whole spectrum of offsetting mechanisms) and, importantly, a strategic choice.

It is a complex, expensive process that requires new technologies and skills that Russia and the Gulf countries currently do not have. For now, however, there are no other options in sight for securing the long-term stability of its export-focused resource-based economy.
What the International Community can do

In this respect, the international community could take some steps to encourage a smooth energy transition for fossil fuel resource rich economies like Russia’s.

First of all, a clear and transparent communication of the long-term decarbonization strategies and schedules of the importing countries is an important signal for producers, so that they can adjust their strategies and investments accordingly. This would require high-level coordination and synchronization, which would be quite a challenging exercise. But without understanding it, producers inspired by calls for additional investments and exports in the short-term will find themselves with enormous stranded assets and shrinking revenues.

The second important component is technological cooperation and joint development of the new supply chains and of the appropriate regulation and certification mechanisms—for decarbonized oil and gas supplies, as well as for blue and green hydrogen and renewable electricity exports. This will be achieved and tested only with bilateral pilot projects, which are lacking at the moment.

And, of course, the interests of the producer economies should not be ignored during the global discussion: the rapid destabilization of any of these hydrocarbon producing countries could have extremely dramatic consequences for their regions and, potentially, for the whole world.

TATIANA MITROVA, PhD, is Director of the Energy Center in Moscow School of Management SKOLKOVO.

She has more than twenty years of experience in the analyses of the global and Russian energy markets. Mitrova is a Senior Research Fellow in the Oxford Institute for Energy Studies (OIES), Scientific advisor at the Energy Research Institute of the Russian Academy of Sciences (ERI RAS), Visiting Fellow at the Center on Global Energy Policy at Columbia University, and Distinguished Research Fellow at Institute of Energy Economics, Japan (IEEJ). She is also a Non-Executive Director at Schlumberger NV and NOVATEK, and Visiting Professor at the Institut d’Etudes Politiques de Paris (Sciences Po) Paris School of International Affairs.

Endnotes

The New Geopolitics of a Decarbonizing World

The world has transitioned to new energy sources before, from wood to coal to oil to natural gas. And each transition has reshaped the geopolitical map in countless ways, creating hard-to-imagine realities. British colonialists from the bygone Empire would be shocked to discover that not only is Newcastle receiving instead of exporting coal in the 21st century, but that the descendants of their former subjects on the Arabian Peninsula would use oil revenue to bid for the Newcastle football team.

The current transition to low-carbon energy sources—known broadly as decarbonization—will affect geopolitics and foreign policy at least as much as did its predecessors, and it will require a response from the foreign policy community. This essay examines those effects and the needed response.

First we note how this transition is different from previous ones, in speed and scope. We then summarize the role of energy in various areas of current foreign policy: in modern geopolitics, fossil fuels are a strategic resource that affect money, power, and diplomatic relationships. Finally, we examine the impacts that decarbonization is having on these policy areas, using a diverse group of countries as illustrative cases and offer recommendations for how the foreign policy community can ensure a smooth transition to new energy sources.
A New Type of Transition

Our current transition differs from previous ones in two main ways. First, decarbonization must be an energy replacement, not merely an energy addition. In past global energy transitions, the new energy source has tended to surpass rather than replace the existing one1: for instance, while oil displaced coal in the 1960s as the dominant resource in the global energy supply, the world consumes more than twice as much coal today as it did then.2 Decarbonization, on the other hand, requires reducing fossil fuel consumption to an absolute minimum in order for the world to hit stated climate targets. Indeed, the majority of known, valuable fossil fuel reserves must stay in the ground to avoid dangerous climate change.3

Second, this climate protection-driven transition needs to occur significantly faster than previous transitions, which primarily occurred because the rising energy resource was cheaper or much more useful to its end-users. In previous transitions, as the energy historian Vaclav Smil has pointed out, it took over 50 years for a new energy resource to reach “a large penetration,”4 let alone market dominance. Today, low-carbon energy—including both renewable energy and nuclear energy—accounts for only 15 percent of the global energy mix.5

By signing the Paris Agreement on climate change, the nations of the world have implicitly pledged to achieve this more comprehensive transition in record speed. According to the UN Intergovernmental Panel on Climate Change, in order to have a better than 66 percent chance of limiting warming to 1.5°C or less, the world must achieve net-zero greenhouse gas emissions by 2050, i.e. in 30 years.6 Even pathways based on slower emissions reductions entail net-zero emissions by around 2070 or 2080 to limit warming to 2°C, and thus rapid declines in oil and gas consumption by the middle of the century. In historical terms, stakeholders will not have long to adjust.

This is not to say that decarbonization on this ambitious timeframe is unachievable. Certain countries and sectors have transitioned more quickly, from Kuwait shifting its economy to run on oil in the late 1940s, to the French electricity sector going nuclear in the 1970s, to Brazilian automakers switching to flex-fuels cars (that can run on either gasoline or ethanol) in the 2000s.7 Moreover, the expansion of renewable energies has also already made significant progress in recent years in countries such as Costa Rica, Iceland, Denmark, and Uruguay. Policymakers hope to use the lessons of previous efforts to accelerate the spread of clean energy. They must also be aware of the political effects of such transitions.

Money: Energy is big business. It is not just a commodity but a basic resource required to exploit all other resources. Energy expenditures account for over 3 percent of global GDP, even without taking into account energy subsidies, energy transport costs, and energy efficiency measures.8 Fossil fuel imports alone make up over 10 percent of global merchandise import costs.9

Accordingly, energy is a key revenue source for governments who tax energy transactions, sell drilling rights, or own shares in energy companies. Fossil fuels are in fact the most important source of revenue for the governments of Nigeria, Russia, Iran, Venezuela, and Saudi Arabia. They are also a vital source of income and jobs in certain regions and sectors, whether oil and gas extraction in the Canadian province of Alberta, freight transport in India, or coal mining in Southern Poland.

Power: National control over or access to fossil fuels has long been key to international power. The availability of domestic coal was essential to Britain’s industrial revolution and imperial strength, and great powers have gone to great lengths to secure energy resources ever since. The oil-exporting nations of OPEC discovered in the 1970s that their energy resources gave them the ability to put major pressure on larger, richer energy importers.

Although securing resources has seldom been the primary cause for a war, it has been a factor in many military conflicts and diplomatic spats, from the Nigerian Civil War of 1967-70, to the 1991 Gulf War, to the current tensions over drilling rights between Greece, Turkey, and Cyprus. Interestingly, research suggests that petrostates—those where oil exports constitute more than 10 percent of GDP—have been more likely to engage in military conflict than non-petrostates.10

Governments can use fossil fuel revenues to develop and diversify their economies, expanding their influence on foreign affairs, and they can funnel them into social spending to improve lives and maintain stability. Yet the presence of substantial fossil fuel reserves can also lead to negative outcomes if the “resource curse” strikes. In fact, because trade in fossil fuels is so important to both importers and exporters, merely being located along key trade routes can give a country more geopolitical weight. A good example is Ukraine’s role as a transit country for sales of Russian gas to Europe.
Some countries will likely enjoy geopolitical benefits. Those countries that currently import large quantities of fossil fuels will become less dependent on exporters, improve their balance of trade—and perhaps enjoy new economic opportunities if they can seize the initiative and dominate the technologies required for a decarbonized energy system. Firms from China to California are racing to file clean energy patents.

The flip side is that decarbonization represents a real challenge for oil- and gas-producing states. The International Energy Agency has argued that economies that produce oil and gas could lose US$7 trillion by 2040 in a low oil price environment. States that have failed to diversify their economies are particularly exposed and may slide into instability. Meanwhile, states that face high production costs in the oil sector or rely on high oil prices to balance their budget will suffer more immediate negative impacts—especially if the oil-richest nations decide to “panic and pump,” i.e., to sell their buried treasure while they still have customers. Fossil fuel exporters may also have to contend with trade restrictions imposed by customers should these customers move to tax imported products based on their embedded carbon emissions. The EU already plans to implement such a carbon tax at its borders.

Just as decarbonization transforms geopolitics, geopolitical considerations can in turn influence decarbonization—think of China’s Belt and Road Initiative, which is financing high-carbon infrastructure (coal-fired power plants, oil pipelines) in part for geopolitical reasons and in the process may lock in a high-carbon economy. Decarbonized geopolitics will, however, resemble current geopolitics in certain ways. There will still be cross-border trade in electricity and hydrogen in a decarbonizing world, which means there will still be security and transit risks. There will still be energy technologies that require certain natural resources: the EU estimates that it will need up to 16 times more lithium and five times more cobalt—both are used for batteries—by 2030 to meet its climate neutrality goal.

Like fossil fuels, these resources are distributed unevenly, which raises concerns about access. China, for instance, has the largest deposits of rare earth metals (used for magnets for e.g., wind turbines) and, alongside Chile, it is the main producer of lithium. It already reduced exports of rare earth metals in 2010 amid rising tensions with Japan. The leading producer of cobalt, meanwhile, is the unstable Democratic Republic of the Congo. A race to exploit clean energy resources in poorly governed countries could have negative environmental and human rights impacts if not guided by appropriate resource governance. Careful planning, e.g., supporting recycling systems and the efficient use of resources, can help avoid future scarcities, though technological breakthroughs may be also key to reducing future dependencies on all these materials. Finally, the decarbonized world map will still have some countries whose natural energy resources boost their geopolitical position: Algeria, Australia, and others could use solar and wind power to produce energy carriers such as hydrogen.

What Impacts Will Decarbonization Have in These Areas?

Decarbonization will change the landscape of money, power, relationships, and strategic resources in a way that offers new pathways to peace and stability. Yet it also requires managing energy transitions to avoid the sudden destabilization of existing relationships.
• Relative prepared
Wealthier, politically stable exporters are relatively prepared to deal with the repercussions of a global decarbonization process. Canada, for example, is a stable, highly developed democracy with a diversified economy and a well-educated workforce, although the oil industry remains economically important. The country has already started to establish institutions, such as a Task Force on Just Transition for Canadian Coal Power Workers and Communities, that are responsible for providing knowledge, options, and recommendations to guide a just transition process in the country. Qatar, as another example, is a rich petrostate with stable governance structures and one of the highest per capita incomes in the world. It has used the wealth generated by its oil industry to develop its gas sector, as well as other areas of the economy and its external relations.

• Facing Risks and Opportunities
A second set of countries faces both major risks and opportunities. In Colombia, revenues from coal and oil exports are economically significant, but the economy increasingly aims at diversifying into low-emission areas—for example by expanding the creative industry and other service-oriented sectors. However, the country is still in the process of emerging from decades of internal conflict. Indonesia, as another example, is a rapidly developing economy that is experiencing huge growth in the demand for goods and energy. This growth is highly dependent on the exploitation of its abundant hydrocarbons, primarily coal and oil, as well as other carbon-intensive assets, such as palm oil. A global shift away from fossil fuels, like a ban on unsustainable palm oil, would have major repercussions for its economy.

• Fragile
Finally, some countries are highly vulnerable to deep decarbonisation processes—especially where their main trade partners are already working towards achieving climate-neutral economies. In Nigeria, the economy is highly dependent on gas and particularly oil. These two commodities account for almost all the country’s export revenues. The country also scores poorly on indexes assessing state fragility, human development, strength of governance, and preparedness for climate change impacts, weaknesses that the COVID-19 pandemic and ensuing recession have only made more acute in fragile countries around the world. Another example of a fragile country is Azerbaijan, which faces an ongoing conflict with Armenia over disputed territory and whose economy is highly dependent on oil and gas trade with the decarbonizing EU.

Foreign policy actors know how problems in a distant, fragile state can quickly land on their desks, whether the trigger is a coup, migration flows, or a virus. Unlike pandemics that strike suddenly, though, with decarbonization it is relatively easy to predict which exposed sectors in which fragile countries will fall into disarray.

The sooner the international community acts to manage the fallout, the better.

How Can We Make the Transition Less Bumpy?
In order to manage the effects of this energy transition, which is already in progress, foreign policy actors must ensure that decarbonization goes hand in hand with the further development of robust bilateral relations. This approach requires a climate-informed foreign policy that acknowledges the shifting flows of money and of power, as well as the changing landscape of diplomatic relations and strategic resources. Different policy areas can contribute to a stable and peaceful transition process.

• Climate and energy policies
Low-carbon development, including renewable and clean energy technologies, is a particularly promising field for developing future cooperation, transforming existing relations, and promoting enhanced action worldwide through the increased use of diplomatic resources.

Many fossil fuel-exporting countries have great potential to enhance cooperation around expanding sustainable energy. Renewable energy enjoys increasing price advantages, is becoming an internationally recognized prime energy resource, and can be linked to established programs and strategies for economic diversification. Renewable energy also yields co-benefits, like good jobs, increased energy access via decentralized energy systems, and improved livelihood security and living standards in rural areas. These advantages are especially clear in developing countries like Nigeria, where only around 60 percent of the population are connected to the electricity grid, and 80 percent of those with grid access rely on generators running on expensive imported diesel fuel to cope with frequent outages.

• Trade and investment
Foreign policymakers need to consider a wider variety of potential entry points to move countries beyond fossil fuels and
other carbon-intensive products. Trade, investment, and more generally, economic cooperation with countries facing risks from global decarbonization, such as Nigeria or Colombia, can play an important role. As seen in the EU, partnership and cooperation agreements or free-trade agreements can provide a strong basis for such economic cooperation. A starting point could be cooperation between countries that have strategies or plans for economic diversification; these could build more strongly on and connect to priority sectors and industries independent of the fossil fuel business. Such activities should also help enhance these countries’ resilience against stability risks arising from their dependence on oil and gas in a world that is beginning to move beyond fossil fuels.

Science and education
Poorer fossil fuel exporters in particular face significant challenges in developing a knowledge-based economy, which is itself closely linked to aspirations of economic diversification. Countries with established educational and research programs should recognize that these capacities are a strategic resource with which to encourage and shape diplomatic relations and international cooperation. By cooperating with fossil-fuel exporters, they can help to enhance their education and skills development as well as their research capacities. Such cooperation on education, research, and training can be intensified both bilaterally and in interregional frameworks. Renewable energy and other aspects of a low-carbon economy have particular potential in this respect (e.g., university partnerships or joint university degrees).

Finance and development
Diplomatic relations can put a focus on realigning finance and development cooperation to support decarbonization. Ongoing debates in Europe and beyond center on designing external finance and development cooperation so that a significant share of overall finance is reserved for climate and low-carbon development purposes. In addition, governments need to work to phase out or prohibit finance that is not aligned with low-carbon development objectives. China’s Belt and Road program fails to do this. On the other hand, Japan has announced it will slash its support for coal power in Asia, the UK government’s overseas development bank is cutting support for fossil fuel projects, and the European Investment Bank pledges more than 25 percent of its financing to climate action. An important element of such reformed policies on external finance and cooperation is financial support for a just transition. Incorporating strategies for a just transition would heed the lessons from internal debates, like those in Europe or Canada, on the importance of supporting regions particularly reliant on high-carbon industries and activities.

Security and peace
The geopolitics of decarbonization are also closely related to issues of peace and security. Many fossil fuel exporters face serious internal and/or external security challenges. This dynamic is as true...
for relatively prepared countries as it is for fragile ones. For example, Nigeria faces both serious internal and regional security threats, whereas the main security challenges are primarily domestic for Colombia and Indonesia. Qatar and Azerbaijan in particular are embedded in precarious regional security contexts. In addition, these countries are—towards varying extents—challenged by weaknesses of their governance systems. Partners such as the EU can build on and intensify cooperation with fossil-fuel exporters on these security matters.

Conclusion

This vital energy transition is not just a matter of concern for climate and energy policymakers. Nor should the foreign policy community expect it will create new geopolitical dynamics around climate diplomacy. He is also the climate editor at Berlin Policy Journal. He has written about politics and climate change for The Atlantic, New Statesman, the Centre for European Reform, Clean Energy Wire, and Euractiv.

NOAH GORDON is a Project Manager at adelphi. His research focuses on climate and energy policies as well as on peace and conflict studies. In 2007 and 2008 he served the Policy Planning Unit of the German Foreign Office as an expert on climate and energy policies. Dennis Tänzler has more than fifteen years of experience in the fields of global environmental policy, climate change policy and climate change and foreign policy.

Dennis Tänzler is Director International Climate Policy at adelphi. His research focuses on climate and energy policies as well as on peace and conflict studies. In 2007 and 2008 he served the Policy Planning Unit of the German Foreign Office as an expert on climate and energy policies. Dennis Tänzler has more than fifteen years of experience in the fields of global environmental policy, climate change policy and climate change and foreign policy.

Endnotes

19 Harding, R. (2020, July 12). Japan vows to slash financing of coal power in developing world. Financial Times. https://www.ft.com/content/f0a54a56-4e1f-4d77-8ba9-998993febae0

20 Harding, R. (2020, July 12). Japan vows to slash financing of coal power in developing world. Financial Times. https://www.ft.com/content/f0a54a56-4e1f-4d77-8ba9-998993febae0

22 What is a just transition? European Bank for Reconstruction Development. https://www.ebrd.com/what-is-a-just-transition
Many Marshallese have their own migration story. Our migration story began when we moved from the capital city of Majuro to Hawai‘i for work and educational opportunities. These opportunities included working with the nonprofit Pacific Resources for Education and Learning (PREL) while pursuing postgraduate studies (Hilda), and elementary and secondary education in the downtown area of Honolulu (Kathy). For twelve years, life revolved around school, work, family barbecues, and picnics at Ala Moana, and we welcomed a continuous tide of relatives from the Marshalls who came through the Honolulu airport with coolers and suitcases in tow to live with us in our 3-bedroom apartment on Makiki Street.

We always understood that our future was not in the United States. There were no plans to stay permanently—we had moved for a purpose and when we reached our goals, we returned home. Yet the years we lived as a family in Honolulu would set the foundation for understanding the nuanced difficulties of living and migrating as a Marshallese. And as we each entered the realm of climate change work, those experiences have continued to inform and shape the dialogue we pursue at local, national, and international levels.

Our perspective has always been that migration, while a necessary option and important response to climate change, is not meant to be—or should it be—the only option for our citizens. Forced migration is not the way forward. Our family willingly chose to relocate—and our fellow citizens and future generations must be able to retain that right of choice as well.

The science tells us that climate change impacts will continue to worsen and that we can no longer just focus on mitigation. The Republic of the Marshall Islands (RMI) is currently developing its National Adaptation plan, a strategic plan that considers various responses to climate change, including the elevation of land, internal migration, or even the extreme option of building new islands. At only 2 meters above sea level, we have no higher ground to run to—we must, instead, build that higher ground ourselves.
This is why policies to address climate change must not only continue to support mitigation efforts and create systems that enable a just transition into U.S. communities, but also continue to provide support for adaptation—especially for atoll nations, which are uniquely vulnerable. These policies must include funding mechanisms that enable atoll countries to access funds for adaptation sooner rather than later, resources to enable meaningful dialogues with stakeholders in our communities, and studies for understanding and supporting land reclamation or land elevation.

Our Giant, Distant Neighbor

The issues that the RMI is now planning for and considering do not exist in a vacuum. Our country has a long and complicated history with the United States, the country that most of our citizens have and will likely continue to migrate to as climate impacts worsen.

To properly understand our current and future migration patterns, one must also understand the history of the RMI’s relationship with the United States, starting with the RMI’s transition from a Trust Territory of the U.S. to an independent nation. This change of status took place without a treaty. The legacy of nuclear testing conducted by the United States continues to influence migration across the islands and the health of our people. After World War II and before the Compact of Free Association was enacted, the United States tested 67 nuclear weapons on Bikini and Enewetak atolls. Those tests destroyed our islands and ecosystems and had disastrous impacts on the health of our people.

Marshallese from these nuclear affected islands were displaced within the Marshall Islands, and are still displaced 70 years later due to high levels of radiation on those islands. Understanding that their islands will never be restored to pre-nuclear testing conditions, many members from those islands in particular have emigrated to seek better lives. For example, a community of Enewetak islanders—the islands that house the Runit nuclear waste known for its cracked dome—currently reside on Big Island in Hawai‘i. While our family does not come from the four islands the U.S. deems nuclear-affected, the elders in our family passed away from nuclear-related cancers long ago. No Marshallese citizen, regardless of where they reside in the RMI, is untouched by this legacy.

This nuclear legacy is only one example of the complicated relationship that the Marshallese have with the United States. COVID-19 has also exposed the cracks in the U.S. system, and the many ways vulnerable populations fall through these cracks. Marshallese people in particular have had a higher percentage of deaths in Arkansas, where many are working low-wage jobs with little to no access to the health care that was promised by the Compact of Free Association treaty. We hear from our family members working in the Consulates and as healthcare professionals how they struggle to support Marshallese community members in navigating the complicated systems to gain access to unemployment benefits and health insurance.

This systemic marginalization, combined with the current atmosphere of hostility and outright racism towards immigrants in the United States, puts into stark reality the struggles Marshallese and other Pacific Island people will face as climate impacts drive increased migration. In our work through PREL as well as the time we spent living and growing up in the U.S., we have experienced this discrimination ourselves in our daily interactions with acquaintances and friends, teachers, and in institutional policies such as the eligibility for Medicaid.

A Framework for Mobility

The Compact of Free Association Treaty, a treaty between the Marshall Islands and the United States that first went into effect in 1986, originally extended education and health benefits such as student loans and Medicaid insurance. The Federated States of Micronesia and the Republic of Palau have also signed similar Compact agreements with the United States. The first Compact between the RMI and the U.S. was a fifteen-year treaty that was renewed in 2003 for another fifteen-year period, and is currently up for renewal again in 2023.

Migration out of the RMI increased after the Compact went into effect because of visa-free provisions that allowed easy mobility between the RMI and the United States. In 2011, 25 years after the Compact came into force, 22,343 Marshallese were living in the United States. That number has since risen to an estimated 30,000. This means nearly half of all Marshallese have migrated to the States, with significant numbers in its territory of Guam as well.

While the Compact has enabled easier mobility, there are significant gaps in the agreement that must be addressed in the face of both COVID-19 and climate change. First, the status of Freely
Associated States (FAS) residents living in the United States must be made clearer. As it stands, confusion over our status means that some states allow certain critical benefits, like health insurance, while others deny them.

The discontinuation of Section 177 funds—a $150 million Nuclear Claims Fund for the four most affected the RMI atolls—also needs to be addressed. Without the funds, the Nuclear Claims Tribunal is no longer able to operate, despite the fact that numerous land compensation and personal injury claims have gone unresolved. The elders in our family—both of whom had nuclear-related cancers—were awarded personal injury claims by the Nuclear Claims Tribunal, yet they only received half of the payment because the funds ran out. How many other nuclear victims have experienced this?

We are currently in the process of renegotiating the Compact and working to ensure that climate change and its impacts are considered in the talks. The current U.S. administration’s position on the issue, however, will create barriers to that discussion, despite the strategic importance of the Marshall Islands generally, and of Kwajalein missile test site, specifically.

Climate, Health, and Safety

The Compact of Free Association has provided important opportunities for the RMI citizens to access healthcare and education opportunities in the United States. But the gaps in the agreement, paired with the heightened risks posed by climate change and COVID-19 and the current administration’s reluctance to address these risks, signal a need for broader foreign policy initiatives that support the Marshall Islands and other frontline nations and communities.

Opportunities lie in the United Nations Framework Convention on Climate Change as well as with the Human Rights Council, where Marshall Islands currently has a seat.

Our country is one of just 5 atoll nations that are severely threatened by climate change. King tides, intrusion of salt water into freshwater resources, and the difficulties of growing food have exacerbated the challenges of the harsh atoll environment. We are also facing increased health challenges as a result of climate change. Scientists have determined that dengue fever and other mosquito-borne illnesses are increasing as climate change worsens, and our country has been experiencing this first hand. From this past October to January 2020, our hospitals and staff were overwhelmed with patients sick with dengue fever.

This experience with dengue, however, helped inform our government’s decision to close down borders early on in an effort to prevent COVID-19 from entering our country. Hospital administrators advised the National Disaster Committee to take swift action, learning from lessons months earlier that our system and staff lacked the capacity to deal with the pandemic sweeping the world.

COVID-19 has exposed the ways in which countries are capable of transitioning to low-carbon means of transportation, but at high costs. Climate change advocates, including representatives from our own country, have long been pushing for these transitions, but through processes that would provide the breathing room needed for systemic change, and without the high economic impacts and death tolls seen from the pandemic.

Ultimately, foreign policies need to provide the proper infrastructure for migrating—infrastructure that affords our citizens the access to essential services like health care that we desperately need. At the same time, policies must also address and support adaptation so that migration is a choice, and those that decide to stay are able to maintain our land, our identity, and our culture.

Living as a Marshallese family in Hawai’i for all those years gave us many opportunities—but it also taught us the many difficulties of living away from our homeland. We want to ensure that all Marshallese families have the choice to migrate, but can also continue to live in our islands for generations to come.

SENATOR HILDA C. HEINE, former President of the Republic of the Marshall Islands (RMI), is serving her third term as Member of Parliament (Nitijela) from the constituency of Aur Atoll Electoral District, RMI. She is the first female President of RMI and one of two women elected to the Nitijela following the 2019 election. Previously, Senator Heine was Minister of Education and served the Marshall Islands government in various capacities, including as President of the College of the Marshall Islands. She worked for the Pacific Resources for Education and Learning in Honolulu, Hawaii for ten years. A crusader for women’s rights, Senator Heine was a co-founder and advisor to Women United Together Marshall Islands. Under her leadership, the Pacific Women Leaders Coalition was formed in 2019. Senator Heine holds a BA from the University of Oregon, MA from the University of Hawaii, and EdD from the University of Southern California.

KATHY JETÑIL-KIJINER is a poet of Marshallese ancestry, born in the Marshall Islands and raised in Hawai’i. She received international acclaim through her poetry performance at the opening of the United Nations Climate Summit in New York in 2014. The University of Arizona Press published her collection of poetry, Iep Jetñil: Poems from a Marshallese Daughter. In 2019, she was selected as an Obama Asia Pacific Leader Fellow and MIT Director’s Media Lab Fellow. She received her Master’s in Pacific Island Studies from the University of Hawai‘i, and is currently a PhD Candidate at Australia National University. Kathy serves as Climate Envoy for the Republic of the Marshall Islands government and as Director for the Marshall Islands-based youth environmental nonprofit Jo-Jikum.
Climate migration is increasingly visible worldwide, from Pacific Islanders moving inland, to migrants in African countries whose livelihoods have been destroyed by desertification and land degradation. And we have seen in the past few years—whether at the United States’ southern border or in the Mediterranean—that migration can quickly become a pressing issue for foreign policymakers, who are often unprepared to handle the aftermath of migration crises.

The linkages between migration and climate change are drawing more attention in international policy forums. For many United Nations member states, discussing the adverse impacts of climate change on migration is no longer an option but a necessity. Indeed, even if we do not know exactly how many people migrate as a result of the slow and sudden onset impacts of climate change, we do know that policymakers in all regions of the world are—or will be—confronted by challenges linked to the increased mobility of people because of climate impacts on their livelihoods, physical safety, and health.

In 2019, 25 million of people were displaced within their own countries by weather-related disasters, including over 900,000 people in the United States. The World Bank estimates that by 2050, 140 million people could be compelled to move within their home country borders because of climate impacts. We are not prepared for this anticipated surge in mobility. Existing migration management policies and practices are often inadequate to address the challenges associated with the movement of people in the context of climate change, environmental degradation, and natural disasters. Even where there has been progress in national policies, it is insufficient. The pace at which the climate is changing combined with other economic or social shocks should prompt governments to urgently consider how to anticipate and respond to evolving migration patterns.

Better Climate Migration Management Will Help States Weather the Storm

COVID-19 is an extreme shock that currently is at the forefront of our thoughts. But there will be more shocks to come—some that we can predict and others that will disrupt our societies with little or no warning. These crises all have the potential to affect the individual fate of millions of migrants, including climate migrants and those left behind. While there is no one-size-fits-all blueprint applicable to crises, better migration management is always going to be an essential component of crisis response.

The Global Compact for Safe, Orderly and Regular Migration (GCM) and the Task Force on Displacement under the United Nations Framework Convention on Climate Change (UNFCCC) have produced solid recommendations and principles that can guide states in the development of forward-looking policies on climate migration. As has been the case for many years, the emphasis is on privileging climate change adaptation and resilience strategies in situ so that people aren’t forced to move because of circumstances beyond their control.

More recently, however, the discussion has evolved to acknowledge, importantly, that migration policies need to be expanded by states to facilitate safe migration for those who cannot remain in, or return to, their areas of origin due to climate and environmental conditions.

The political acceptance of this concept is relatively new—therefore, these ideas are mostly still at the level of principles in international policy texts. However, there is hope that the increased political awareness at the global level can trigger a review of existing national and regional migration and climate change policy frameworks to align them with agreed upon global principles. This is the case for example in Tajikistan where the United Nations Migration Agency (IOM) is currently undertaking a policy review to analyze how national policies and planning processes can better integrate migration and climate dimensions.

New mobility policy frameworks could also be developed on the basis of the GCM, opening the possibility to further mainstream climate and environmental dimensions. For instance, in the 3-year implementation plan of action for the GCM of the African Union, one priority centers on addressing drivers of migration in the context of climate change. For most countries and regions, however, translating these principles into national and regional policies is both a political and a technical challenge. Many national policymakers are hamstrung by the negative connotations of migration and sensitive nature of discussions focused on helping people to migrate to cope with the impacts of climate change. They also need better information and guidance on how to analyze their national policy frameworks and propose relevant changes.

The language adopted in these global policy documents is constructive, but words will not mean much unless governments actively develop and implement migration management policies that provide comprehensive legal migration options to climate migrants. In a world where the mere mention of migration is politically charged, having a frank conversation on this topic will not be easy. Yet the pace of the climate crisis leaves no other choices than to tackle this question head on.
Moving Beyond a Fear of More Migration

Some states are already implementing migration management policies that can be applied to disaster contexts, such as visas granted on humanitarian grounds in the Dominican Republic, Argentina, and Panama. However, these measures do not usually apply to people migrating because of the slow impacts of environmental degradation.

A recent mapping of human mobility and climate change in relevant national policies and institutional frameworks produced by IOM found that out of 66 countries and territories reviewed, 53 percent referenced climate change and environmental factors in their national migration and displacement frameworks. Notably, this includes several African countries such as Ghana, Kenya, Nigeria, Botswana, and Uganda. Some countries—like Nepal, Georgia, and Vanuatu—have even developed specialized policies on climate and human migration. But these discussions are often ad hoc and not systematized.

As we enter an uncertain post-COVID-19 period, there is an opportunity to rethink climate action and climate migration management in the context of building back better. It is time for states to engage in a systematic and comprehensive analysis of their migration policies and practices with dual ambition: to understand how their different migration management tools can be repurposed to fit new environmental realities, and determine what new practices and policies might be needed.

The goal is not only to provide protection and assistance to climate migrants, but to also enhance and elevate the benefits that these migrants bring to their host societies. The United Nations system and civil society actors can support states by extracting lessons learned from existing initiatives and providing general guidance and recommendations across the whole spectrum of migration management policies.

To this end, many migration management approaches can be rethought and stepped up. One of the clearest approaches is for states to provide exceptional or special migration measures (including visas and residency permits) to those affected by the impacts of climate change. Another approach is to leverage more common migration categories—for instance, permanent residency and citizenship applications—in cases where migrants are affected by severe climate impacts and returning is not an option.

Existing labor, educational, and training bilateral agreements can better target communities particularly vulnerable to climate impacts, quotas can be expanded, and new options created to serve those most vulnerable to climate change. Regional free movement protocols can explicitly include climate migrants and persons displaced by disasters. Migrant voluntary return and reintegration policies and programs can be tweaked to systematically be environmentally sustainable and create opportunities in the green economy.

Measures to prevent and combat trafficking and smuggling of migrants should systematically consider how disasters and climate impacts increase risks of trafficking and smuggling. Formulating economic measures to reduce the cost of transferring remittances and incentivize diaspora investments in climate action is also a promising avenue that remains underexplored.

Health dimensions should be taken into account across the board, including—as noted repeatedly by the UN Secretary General—through the integration of climate action and COVID-19.

Climate migrants have their specific vulnerabilities, but they are also a genuine asset to their host communities and societies. A comprehensive migration management approach can help to offer dignified and legal opportunities that are beneficial to all. Such measures will come as a complement to climate mitigation and adaptation efforts that seek to prevent forced migration and allow people to remain in their communities of origin. As the world faces the dual impacts of the COVID-19 and climate crises, it is time to create better systems to provide dignified options to migrants and support the states they leave and enter in a warming world.

The opinions expressed in this article are those of the authors and do not necessarily reflect the views of the International Organization for Migration (IOM).
DINA IONESCO is the Head of the Migration, Environment and Climate Change (MECCI) Division at the United Nations Migration Agency (IOM). In this capacity, she oversees since 2015 IOM’s policies and programmes related to the nexus between migration, environment and climate change. Dina is the co-author of the Atlas of Environmental Migration (2016) and of numerous articles and publications. Dina was awarded the ‘Inspirational woman working for sustainability’ award in the context of the 2016 International Women’s Day, and of the ‘2016 Outstanding Women of the Year’ award by the United Nations Women’s Day.”

MARIAMTRAORE CHAZALNOËL is a Senior Expert in Migration, Environment and Climate Change at the United Nations Migration Agency (IOM). She is French and Malian and is currently based in New York City. She specializes in global policy questions related to climate change and migration since 2013 and works in global policy questions related to climate change and migration. She is a frequent speaker on these issues worldwide. Mariam has authored and edited a number of articles and publications on climate change and migration. She is a frequent speaker on these issues worldwide. Mariam has been working with IOM since 2008 in Geneva, Barnako, and New York.

Endnotes

The role of environmental conditions in triggering migration has long been hotly contested. Climate change as the definitive condition is no exception. How exactly climate change impacts forced or voluntary migration is difficult to decipher and riddled with complexity, yet the essence of climate change is a dramatic and decisive departure from the past. Despite the inconclusive and sometimes contradictory historical record for the environment-migration nexus, it is clear that climate change will increasingly influence migration patterns around the world. Estimates for how many people will move as a result of climate change are wide-ranging and fraught with uncertainty. What we do know is that migration is an important factor in climate adaptation, for both sending and receiving countries.

The actions that have led to climate change and its impacts (migration chief among them), and the geographically lopsided nature of them, make "climate change" as much a geopolitical term as a scientific one. To date, however, diplomacy related to climate change has been generally relegated to environment ministers, climate negotiators, and scientists who are tasked with managing a phenomenon with geopolitical implications. Those engaged in other areas of diplomacy have not seen its relevance to their portfolios. Many within the diplomatic class, such as trade envoys, actively disregard or oppose climate change curbing goals, despite the consequences for the globe and their very remit.

The effect of this positioning is that climate and environment negotiators, armed with the limited capacity and resources to “manage the trees,” are now burdened with saving each and every forest, as well as the peoples and political economies that depend upon them (i.e., the global population). Consistent with the intent of the “21st Century Diplomacy” project, Sue Biniaz persuasively argues the same in her article, reminding fellow diplomats that “it’s your problem too” and “climate is foreign policy,” both militating in favor of intentional and intensive streamlining of climate change in diplomatic work.

Climate migration touches on innumerable areas across international law, and down to domestic and sub-national decision-making. Notably, climate-induced migration breaks through the typical silos more so than the impacts of climate on other sectors, like agricultural productivity, transportation, and energy. This is in part because climate-induced migration is commonly used to illustrate how climate change can act as a “threat multiplier.” Without additional context, however, the (unintended) consequence of this framing is that it presents climate-induced migration first and foremost as a security risk. It obscures the very practical role that migration plays in climate adaptation, and the need and potential for interventions that prevent forced displacement—that is, interventions that allow people to decide whether or not to move.

This piece surveys relevant evidence and current policy proposals related to climate change and migration, explores the shortcomings of the predominant security framing, and seeks to inspire and advance diplomatic responses that provide meaningful choices for those at the crossroads of climate change and human mobility.
Climate Migration - Evidence and Projects

Although experts are quick to maintain that migration has always been a feature of human behavior and the product of multiple drivers, climate change is increasingly a factor in the decision to move. Perhaps the clearest indication of this is the growing number of people displaced by weather-related impacts. In fact, weather related displacement now represents a significantly larger number of internally displaced people (IDPs) than those displaced by conflict and violence. In 2017, there were 11.8 million new IDPs associated with disasters, compared with 11.8 million new IDPs as a result of conflict and violence.

Climate change will also impact migration through its effects on the five broadly recognized drivers of migration: economic, political, demographic, social, and environmental. Together these drivers comprise a conceptual framework for deciphering the range of factors that might affect the volume, direction, and frequency of migratory movements. Climate will redistribute economic activity and shift trade routes, impact agricultural productivity, expose weak governance in fragile states, and deepen inequities. As climate change impacts the primary drivers of migration, its influence on migration decisions and pathways will grow.

Evidence of Climate-Migration Linkages Around the World

The interplay of climate migration drivers is born out in the results of studies on migration in West Africa. One review examined 15 empirical case studies that concentrate directly on the links between climate and human mobility in West African drylands. The authors found that the studies were consistent on three points: 1) environmental conditions and changes tend to result in temporary migration; 2) migration is commonly leveraged to diversify income; and 3) migration is caused by multiple factors. They also determined that environmental factors are often not the main driver but can trigger movement in regions where there are other drivers at play. Again, however, whether the future stays consistent with current and former studies is unclear in light of accelerating climatic changes.

Increased temperature may have a more significant impact on migration as it can more directly, and more permanently, impact those whose livelihoods are dependent on the environment (e.g., declines in agricultural productivity). A 21-year longitudinal survey conducted by Mueller et al. in rural Pakistan that measured the relationship between weather and long-term migration found that while flooding—a climate shock commonly associated with large relief efforts—has “modest to insignificant impacts on migration,” heat stress “consistently increases the long-term migration of men, driven by a negative effect on farm and non-farm income.” Interestingly, they explain that flooding’s more modest impact on migration may be because flooding increases demand for local labor and hence reduces migration.

Similarly, Bohra-Mishra et al. demonstrate that increased temperatures have had a much stronger effect on inter-provincial migration within the Philippines than disasters by using a detailed longitudinal data-set, combined with data on temperature and precipitation. Another study by Feng, Krueger, and Oppenheimer found that climate-driven changes in crop yields in Mexico had a significant effect on Mexican emigration to the United States.

Climate change will also influence mobility patterns more directly, however, as global change increases sea level and the number and intensity of droughts, floods, heatwaves, and other extreme weather events. There are, of course, variations in the responses to these triggers. Sea level rise, for example, is more likely to influence the timing and volume of ongoing migration rather than produce novel patterns of migration. Migration responses and displacement as a result of extreme, sudden onset events vary widely across socioeconomic groups, as seen in the United States following Hurricane Katrina. Droughts and extended extreme heat events suggest wholly different patterns. Where livelihoods and food security are undermined, but homes left intact, these events do not generally lead to “immediate, large-scale displacement or migration.” However, if the conditions persist and there is insufficient adaptive capacity, internal rural to urban migration may increase. These divergent responses, under varying scenarios, make a precise prediction of the scope and scale of climate-induced migration a fundamental challenge.

Fig 1: A conceptual framework showing the influence of environmental change on drivers of human migration.
Three broad, possible shifts in mobility due to climate change can be deduced, however:

1. Larger flows of people along established migration routes as the destinations become safer or more attractive, sending areas become less safe or less viable, and migration network effects continue to facilitate movement.

2. Unchanged or even decreased flows of people along established migration routes, either because destinations become less attractive or less viable relative to the sending area, or because migrant networks are not able to facilitate greater levels of migration.

3. New flows of migrants between sending and destination areas that have not historically been connected, leading to the creation of new migration networks.

Numbers like these dominate the climate migration discourse, with estimates of global climate migration ranging from as few as 25 million to as many as 1 billion climate migrants. These numbers can tell a compelling story but are hampered by the limitations of crude population estimates and fail to consider the countering effects of climate adaptation, particularly to facilitate potential migrants’ preferences to stay in place. They also leave out the stories of those unwilling or unable to relocate, sometimes referred to as “trapped populations.” Of equally great concern is the absence of broadly recognized and formal legal infrastructures and clearly articulated and enforceable rights of migrants, much less a spirit of readiness and welcome for receiving countries.

The focus on the projected number of potential migrants obscures another important fact: Migration is a critical and long-practiced resilience strategy with benefits for both sending and receiving communities. In fact, as a response to climate change, it may serve as “the most effective way to allow people to diversify income and build resilience where environmental change threatens livelihoods.” Temporary migration can be a necessary and pragmatic response to disasters, and is capable of strengthening the resilience of affected communities. Migrants often provide significant remittances to their places of origin, increasing the resilience and adaptability of those who remain. In 2019, for the first time, remittances exceeded foreign direct investment and official development assistance flows to low- and middle-income countries.

These potential benefits of migration, however, are dependent on policies that facilitate safe, affordable, and legal migration, ensure equal rights for both migrants and host communities, and avoid real or perceived disparities in opportunity or access to services between migrants and host communities. Decision-makers should institute these migration policies in concert with broader climate strategies such as aggressive decarbonization, sustainable urbanization, climate-smart development, conflict resolution and prevention, and emergency preparedness.

Relevant Laws & Governance Gaps

The instruments and regimes related to migration that are currently in place fail to respond effectively to current migration flows, and increased and potentially erratic movement will likely further stress and strain them. In short, the mobility options for those on the move are circumscribed by increasingly antiquated 20th century parameters. They include: a move to (the rare) neighboring country that allows unrestricted entry; formal international migration programs that facilitate entry to high-income countries, such as a skilled worker visa programs; and the extralegal, clandestine, and often life-threatening journey to another country to seek asylum.

Most climate change and mobility scenarios fall outside of almost all legal frameworks, prompting numerous and sustained calls for a global governance regime to manage international migration. Some have called for a new legal instrument, such as a standalone treaty to address cross-border climate-induced migration, while others remain skeptical that migration spurred by climate change differs substantially from other kinds of survival migration to warrant a new instrument—never mind the difficulty of drafting and passing a new one or amending the Refugee Convention.

Certain migration scenarios may meet the elements of the oft-invoked Refugee Convention’s definition of “refugee.” If authorities were to deny assistance and protection following a slow or sudden-onset event to “certain people because of their race, religion, nationality, membership of a particular social group or political opinion and as a consequence expose them to treatment amounting to persecution,” protections might be available. The overwhelming consensus, however, is that climate-induced migration, particularly triggered by relatively slow-moving sea level rise, for example, falls outside of the Convention’s scope and protections.

More recent international attempts to manage movement related to climate change include three United Nations initiatives relevant to migra-
tion. The Global Compact for Safe, Orderly and Regular Migration (GCM), the Global Compact on Refugees, and the United Nations Framework Convention on Climate Change (UNFCCC) Task Force on Displacement (Task Force). The Task Force seeks to enhance the capacity of governments and regional and international organizations to address climate-related drivers and impacts of displacement by developing recommendations for integrated approaches in response. Some believe that a combination of extant approaches, if fully taken up, would be effective. The GCM, the Sustainable Development Goals, and the UNFCCC displacement efforts “collectively provide all of the policy-making tools necessary for responding successfully to the risks posed by climate change.” Yet the United States, Australia, and a number of European states did not vote to approve the GCM, despite the fact that it doesn’t create any legal obligations. Meanwhile the current U.S. administration has initiated withdrawal from the UNFCCC’s Paris Agreement and appears thoroughly unmotivated by the goals and content of the SDGs.

International agreements related to the protection of human rights may be increasingly relevant. In 2013, an i-Kiribati man was denied asylum in New Zealand after claiming that, if deported, he faced irreparable harm to his right to life because climate change is rendering Kiribati uninhabitable. In a subsequent appeal, the UN Human Rights Committee found that New Zealand did not violate the man’s right to life when they deported him. In their ruling, however, they recognized that “without robust national and international efforts, the effects of climate change in receiving states may expose individuals to a violation of their rights,” suggesting that future claims based on violation of human rights might be available. There are also relevant principles and soft law provisions, such as the Peninsula Principles on Climate Displacement within States and the Sendai Framework for Disaster Risk Reduction, that while pertinent are not binding on any nation state, providing very limited protection for migrants. Some individual nation-states also provide temporary or subsidiary protection for disaster-induced cross-border displaced persons that, while promising, remain ad hoc.

Informing More Effective Diplomatic Responses

Explore State to State Engagement

The diplomatic community might explore avenues adjacent to the multilateral initiatives described above. While there are no legally binding regional conventions or treaties that prescribe obligation for developed countries, existing or newly crafted regional, bilateral, and multilateral agreements may be relevant. And, countries with strong transnational communities can develop bilateral arrangements. The Compacts of Free Association between the United States, and the “Freely Associated States” of the Marshall Islands, the Federated States of Micronesia, and the Republic of Palau, for example, allow for visa free entry to work and live in the United States. These agreements were negotiated before climate related threats to habitability emerged but may, nonetheless, provide an avenue for migration in response to climate impacts. Even so, there are gaps in the existing agreements that, if addressed, would strengthen them. While the agreements do allow for indefinite stay, they do not provide a pathway to citizenship for migrants. The lack of financial assistance restricts eligibility to those with existing resources or family networks. Finally, the Compacts may not serve as an adequate solution to permanent or large-scale population displacement in large part because they are unilaterally terminable by any party.

Regional governance of migration, effectively exemplified by the free movement agreements (FMAs), may offer a more facile, practical response to climate migration and displacement. Such “bottom-up” approaches acknowledge that regions experience climate displacement differently and have differing capacities for protecting those who are displaced. FMAs—provisions within broader regional economic agreements that liberalize mobility restrictions between participating states—have the potential to offer comprehensive protection to climate migrants. They exist across all continents and have already proven effective in facilitating migration in the disaster context. For instance, the Caribbean Community (CARICOM) and Organization of Eastern Caribbean States (OECS) FMAs were both used during the 2017 Atlantic Hurricane season to provide displaced persons a right of entry into neighboring island nation-states, waivers of travel document requirements, indefinite stays in some circumstances, and access to foreign labor markets by waiving work permit requirements. For instance, after Hurricane Maria in 2017, displaced Dominicans were able to migrate to Trinidad and Tobago using the CARICOM FMAs six-month visa-free stay program, and others were able to migrate to Antigua, St. Vincent, Grenada, and St. Lucia under the OECS FMA. Expansion of FMAs may provide effective protection in the climate change context. FMAs may also resonate in the Pacific, as free movement harkens back to pre-colonial Oceania in which islanders’ freedom of movement was not hindered by national borders. Historically, interconnections among islands were inherent to the Pacific experience, “but active travel and resettlement activities were stifled by the migration and mobility restrictions of the colonial powers.” Indeed, current South Pacific negotiations processes seem shaped by these earlier conceptions of mobility when facing contemporary discussion of climate migration. Similarly creative, collaborative, and humane proposals can emerge if the security frame is right-sized to address the multidisciplinary nature of climate change generally, and climate and human mobility specifically.

Loosen the Security Frame and Expand the Toolbox

In the academic literature there is a consistent concern regarding the exceptionalism used to describe climate-induced mobility (as if mobility has not been a defining feature of human history) and the subsequent securitization of climate migration. The larger numbers of potential migrants estimated and disseminated in policy reports are often used to fuel the negative perceptions of migrants themselves, strengthening the “threatened borders” narratives and anti-immigrant sentiment prevalent around the world today. As noted by Boas et al.’s review and reflected in the migration agendas of the European Union, United States, and Australia, among others, the effect of this narrative is that “climate-induced migration” is now a common rationale for measures to strengthen and protect national and regional borders in the Global North. These countries are implementing migration policies that include...
restricted entry, discouragement of asylum claimants, and criminalization of undocumented migration—and, in some instances, are pressuring other countries to do the same. This is suboptimal from the perspective of the migrant as well as host countries and communities.

The growth of anti-immigration sentiment and border tightening is also happening within the Global South, where South-South migration is empirically more prevalent and is projected to grow. In Johannesburg last September, a dozen people were killed in a spate of xenophobia-fueled violence against migrant shop owners.44 Also of note are the stricter border controls Venezuela has erected with its neighbors, the Dominican Republic’s deportation of Dominican-born descendants of Haiti, and Kenya’s border fence with Somalia.45

In addition to military grade weapons, vehicles, and even uniforms, high-tech surveillance tools are being deployed by the U.S. Border Patrol. We see increased border surveillance as well in the European Union with the use of biometric visas for third-country nationals. Robert McLeman underscores the stark consequences of this turn:

…turning these technologies with military origins against civilians … securitizes the act of migration. It blurs the distinction between surveillance actions to detect and deter the approach of armed enemy agents — something that every state has a sovereign right to do — and monitoring borders to prevent the approach of unarmed civilians seeking entry: something every person has a right to do under the Universal Declaration of Human Rights and the UN Refugee Convention. In this collision, the rights of the individual are lost.46

These trends carry their own security risks. Migration can act as an important “release valve.” Restrictions on mobility—including hardened borders and the criminalization of asylum-seekers—force migrants into “expensive and physically dangerous attempts to reach their destinations.”47 Severely impeding mobility can have knock-on effects on livelihood security more broadly, and not just in regard to remittances. For example, in the Lake Chad Basin, where more than 2.5 million people have been displaced by conflict and 10.7 million are in need of humanitarian assistance, an assessment of the region’s climate and fragility linkages found that “restrictions on the places that people can live and travel [compound] the impacts of displacement and population growth on livelihoods and natural resources.”48

A reorientation that does not reinforce decontextualized narratives about climate-fueled mass migration is sorely needed at this time. A narrative that is focused on both the risks faced by affected populations’ and their rights, and is as attentive to the need to migrate as it is to efforts to “stay in place,” will be the most effective. It is only through this reorientation that policymakers and practitioners will be able to identify an expanded set of entry points for interventions that bolster the resilience of both sending and receiving communities.

Conclusion

The single defining global policy decision regarding human mobility and climate change is the rate of greenhouse gas emissions and their rapid drawdown. But the fact remains that even if greenhouse gas emissions were reduced to zero tomorrow, the world would continue to warm for several more decades.

The rhetoric needs to shift from a fear of migrants and unregulated migration to one focused on the impact of investing in countries experiencing high levels of displacement and the facilitation of safe and sanctioned movement for those who need it most. To allow those who are at the climate and mobility crossroads to enjoy meaningful choices, the diplomatic community will need to facilitate the protection of life and dignity, whether individuals and communities are on the move or choosing to stay in place. Key to this is the recognition of the role played by domestic and international institutions, agencies, and international regimes that are tasked with addressing and responding to the increased movement of people across and within borders.49

We must address the magnitude of 21st century human migration, which has no historical analogue, by crafting solutions that are not shaped by, nor perpetuate, fear and othering. Instead, mediated approaches that are inclusive and rights-driven should be the only non-negotiable.

Lauren Herzner Risi directs the Environmental Change and Security Program at the Wilson Center, where she works with policymakers, practitioners, and researchers to generate innovative, transdisciplinary solutions to development and security challenges related to environmental change and natural resource management. Lauren is the managing editor of New Security Beat. She served as a Peace Corps volunteer in Bulgaria and a Crisis Corps volunteer with the Peace Corps and FEMA in New Orleans following Hurricane Katrina. Lauren holds a master’s degree in environmental security and peace from the UN-mandated University for Peace in Costa Rica.

Maxine Burkett is a Professor of Law at the William S. Richardson School of Law, University of Hawai‘i, co-founder and senior advisor to the Institute for Climate and Peace, and a Global Fellow at the Wilson Center. An international expert on the law and policy of climate change, she has presented her work in diverse areas of climate law throughout the United States and in West Africa, Asia, Europe, and the Caribbean. She is a member of the boards of The Climate Museum, ELAW, and Global Greengrants Fund, and serves as a member scholar of the Center for Progressive Reform, and the American Law Institute. Maxine earned her B.A. from Williams College and Exeter College, Oxford University, and her law degree from the University of California, Berkeley.
the entire region is dangerously vulnerable. Rising sea levels and flooding threaten the coastal states of India, Pakistan, and Sri Lanka—as well as Bangladesh. These nations’ large and dense urban coastal populations compound the threat that climate change effects pose to their residents. Meanwhile, landlocked Afghanistan, Bhutan, and Nepal face rising temperatures, drought, and glacial melt. And the tiny yet densely populated island of Maldives—the lowest-lying country in the world—faces the real prospect of complete submersion in the not-too-distant future.

Not surprisingly, over the last decade, nearly half the region’s people—almost 700 million in all—have been impacted by at least one climate-related disaster.2 In recent years, the Germanwatch think tank’s Global Climate Risk Index has ranked India and Pakistan among the top ten countries vulnerable to climate change.3 Additionally, a troubling new study by India’s Ministry of Earth Sciences, released in June 2020 and based on extensive climate modeling, predicts that in the coming decades India—South Asia’s most populous country by far—will become far dryer and hotter, with average temperatures poised to increase by nearly 4 degrees Celsius by century’s end.4 It will also experience longer monsoon periods and more glacial melt, along with warming temperatures in the Indian Ocean and predicted sea level rises of up to nearly a foot.

On the Indian Subcontinent, climate vulnerability is exacerbated by problematic public policy. In India5 and Pakistan6, water shortages are intensified by the government’s subsidization of wasteful flood irrigation and water-guzzling crops, such as sugar. Developers and industrialists are given free rein to deplete precious water bodies. In India, communities in vulnerable neighborhoods have accused officials of ignoring flood risks—except during election campaign seasons.7

Manifestations of Climate-Induced Migration

In recent years, millions of South Asians have been displaced by the effects of climate change. Destructive weather events like Cyclone Amphan are frequent displacement triggers. Back in 2009, Cyclone Aila displaced 2.3 million in India and nearly a million in Bangladesh.8 Pakistan’s 2010 floods damaged or destroyed 1.1 million homes9 and displaced about 11 million people10—and large numbers settled in major cities instead of returning home.11 In 2012, floods displaced 1.5 million in the Indian state of Assam.12 More gradual impacts can also cause displacement. In dry, rural regions, acute water shortages have caused farmers, fisher people, and others with water-dependent livelihoods to migrate to cities. This climate-induced mass displacement is compounded by two enabling factors: the large number of people who work in the agricultural sector, and densely populated coastal areas.

Most of South Asia’s climate-induced migration is domestic, from rural to urban areas. Asian Development Bank research finds that floods and agricultural land losses are increasingly contributing to decisions to migrate to major Indian cities.13 But cross-border migration is possible as well. Recent scholarship predicts that in Bangladesh, climate refugees from rural areas are increasingly likely to migrate internationally as Bangladeshi cities become less desirable destinations for the displaced due to population pressures and a lack of jobs.14

Climate-Induced Displacement: South Asia’s Clear and Present Danger

In May 2020, Cyclone Amphan slammed into Bangladesh and India. It was one of the strongest storms to hit the region in decades, resulting in three million evacuees and nearly two million destroyed or damaged homes.1 People were displaced and lost their homes in three different countries—Bangladesh, India, and Sri Lanka. Many of the lost homes were mud huts and dilapidated shacks, and therefore not at all disaster-proof.

Cyclone Amphan is just the latest reminder that climate change effects and climate-induced migration are clear and present dangers in South Asia. Governments in the region have crafted policies that aim to mitigate these threats. However, capacity, governance, and financial constraints encumber such efforts. They are in great need of international support, which to this point has been present but insufficient.

Acute Climate Change Vulnerability

Many observers, when thinking about climate vulnerability in South Asia, reflexively fixate on Bangladesh—a low-lying, lower riparian nation often convulsed by destructive floods. In reality,
from a dearth of climate-friendly policies.16 The case scenario—one in which the region suffers climate migrants in South Asia by 2050 in a worst-case scenario.15 A 2018 World Bank study projects nearly 40 million damaged by destructive weather events.14 of employment—farming, fishing, betel-leaf growing, and tourism—have been severely damaged by destructive weather events.15 South Asia’s high risk of climate-induced migration is particularly vivid in the Sunderbans, a UNESCO World Heritage Site that houses the world’s largest mangrove forest. Located along the Bay of Bengal and straddling areas of Bangladesh and India, it is highly susceptible to sea level rise, destructive storms, land erosion, and water salinity. Recent years have seen human flight from the Sunderbans Islands due to storms. More flight could be on the horizon given that major sectors of employment—farming, fishing, betel-leaf growing, and tourism—have been severely damaged by destructive weather events.15 A 2018 World Bank study projects nearly 40 million climate migrants in South Asia by 2050 in a worst-case scenario—one in which the region suffers from a dearth of climate-friendly policies.13 The Bank predicts, under this scenario, that nearly a quarter of all internal migrants in South Asia—and nearly 2 percent of the overall regional population—would be classifiable as climate migrants. And even in the best-case scenario, where climate-friendly policies abound, the Bank projects nearly 20 million climate migrants by 2050. According to the Bank’s predictions, out-migration “hotspots” will range from eastern and northern Bangladesh and coastal cities in India and Bangladesh to the Delhi-Lahore corridor spanning India and Pakistan. In-migration activity will be strongest in the southern Indian highlands and areas in Nepal. Bangladesh is projected to be a regional ground zero for climate migration. Under the worst-case scenario, the country could have more than 13 million climate migrants by 2050—more than any other type of internal migrant. Intensifying climate migration in South Asia is not only a looming humanitarian crisis—it is also a regional stability risk. Growing rural-to-urban migration will place added burdens on already overcrowded cities to provide food, shelter, and jobs. Their inability to provide these resources could raise the risks of radicalization in a region where terrorist groups often recruit in major cities in Bangladesh, India, and Pakistan. Additionally, the mass movement of vulnerable, persecuted groups—ethnic Pashtuns fleeing floods in northern Pakistan, Muslims displaced from drought-ridden rural India, Rohingya refugees leaving flooded cities in Bangladesh—could stoke communal tensions and violence in their new communities. Furthermore, a wall that India built in the 2000s to prevent influxes of refugees from Bangladesh has led to violence, with border police gunning down several migrants trying to cross it.12 Surges of future climate migrants from Bangladesh could intensify this violence and deepen societal tensions in the Indian border state of Assam, where many have resented the arrival of these migrants in previous decades.

National Responses

Governments across South Asia have crafted laws and policies to mitigate climate change and climate-induced migration. And they have done so for quite some time: Back in 2006, after the catastrophic Indian Ocean tsunami, the Maldives developed a plan that envisioned relocating the population to higher ground. In more recent years, the plan has expanded to building new islands altogether.16 However, these policies are hobbled by factors that range from problems with enforcement to poor infrastructure, corruption, and insufficient funding. While South Asian authorities are highly aware of climate migration risks, and they have taken initial steps to curb these risks, the magnitude of the climate change and displacement threat amplifies the region’s unpreparedness. In this regard, international support—at higher levels than at present—is essential.

Existing national responses range from the punitive (fines for those that cut down trees) to the proactive (the construction of shelters, mud and concrete walls, and embankments to protect against cyclones). There is also an impressive array of policies in place. India’s climate change national action plan promotes renewable energy, energy efficiency, sustainable agriculture (including the development of climate-resilient crops), and water management. The Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA) ensures 100 days of paid employment per financial year to manual laborers, in order to reduce migration risks stemming from climate-driven livelihood losses.17 And on the urban side, the Jawharlal Nehru National Urban Renewal Mission (JNNURM) has provided $10 billion to 60 major cities for infrastructure upgrades, thereby strengthening cities’ capacities to absorb climate migrants from rural areas.18 Additionally, micro-insurance programs have offered financial relief to disaster-affected communities in return for a modest annual premium. One of the main such programs, AfatVimo, covers damage or losses for earthquakes, floods, cyclones, and landslides.19

Meanwhile, Pakistan has a climate change policy with action plans to address rural-urban migration, and a national food security policy that aims to make agriculture more resilient in the face of climate change.20 Bangladesh has several major initiatives expressly focused on climate migration: a National Strategy on the Management of Disaster and Climate-Induced International Displacement21, and a framework within the Ministry of Disaster Management and Relief that tackles climate-induced internal displacement. The country has also made major headway in developing the sustainable production of forest, fruit, and fish resources in coastal areas. More broadly, Bangladesh has been a pioneer in the region for its efforts to integrate climate change into the government’s interagency structure. Plans are afoot to establish a climate change agency in every government ministry, and the Planning Commission—a government advisory body—releases five- and ten-year plans on climate change.
However, the balance sheet on these signature policies is far from stellar. India’s climate change national action plan has been criticized for a lack of clear strategies and specificity. An academic assessment of NREGA finds that a lack of public awareness about the program contributes to low enrollment among rural adults.25 Another asserts awareness about the program contributes to low implementation of clear strategies and specificity. An academic national action plan has been criticized for a lack of robust policy.30 Pakistan’s national climate change policy boasts an implementation framework31, but many climate adaptation plans haven’t been implemented. The implementing framework is also singled out for its lack of monitoring and evaluation measures.28 Pakistani environmentalists fault Islamabad for passing new climate-related laws instead of focusing on implementing and enforcing earlier ones.23 Making matters worse is that provincial officials, who have the main responsibility for implementation, often lack the technical and financial capacity to carry out climate change policy—a challenge that has afflicted Pakistani policy making more broadly ever since 2010, when a constitutional amendment34 devolved responsibility for many policy matters to ill-prepared provinces.

Additionally, Bangladesh, for all its success stories, still doesn’t have a national climate change policy. And its closest analogue—a climate change strategy and action plan35—has struggled with budgetary and implementation challenges.36 Efforts to build climate resilience in the Sunderbans—and by extension to mitigate the risk of climate-induced migration—have lagged because of problematic infrastructure. This includes water aquifers that are too deep to access, homes made of material (such as tin or asbestos) that don’t allow for rainwater harvesting, and fragile embankment structures. Other problems include poorly coordinated and communicated disaster responses and relief efforts, as well as insufficient funding for concrete installments and mangrove bio shields that would ensure more robust climate-proofing.37

International Responses

There are no specific international legal frameworks related to climate-induced displacement, and there is no consensus within the international system on a definition for an “environmental refugee.”38 However, while there may be no legal justifications for international interventions to address “climate refugee” threats, there are compelling normative ones—and especially in South Asia, where climate vulnerability is acute and climate-induced migration is already taking place.

Fortunately, global players have already stepped in. The International Organization for Migration supported a research project between Bangladesh, Nepal, and Sri Lanka on climate and migration that resulted in a framework product28 on combating climate-induced migration. On more operational levels, the World Bank and the Red Cross have offered technological and scientific support for national disaster risk management programs. The Bank’s South Asia Water Initiative provides technical and analytical assistance to states to operationalize flood forecasting in the Ganges Basin.41 A new Bank initiative, the Climate Adaptation and Resilience for South Asia project, funds the development of climate-resilience policies and investments.42 Bilateral donors are involved as well; the Asia Regional Resilience to a Changing Climate program, a project of the United Kingdom’s National Weather Service and aid agency DFID, helps develop early-warning systems for climate-vulnerable communities in South Asia.43

Policy Recommendations

These international efforts are encouraging, but insufficient. There is much more the global community can and should do to help reduce the risk of climate-induced migration in South Asia.

- Promote more livelihood opportunities in non-agricultural sectors. Agriculture is a top source of employment in many South Asian nations, but it is also arguably the region’s most climate-vulnerable sector. Consequently, its workers are highly susceptible to climate-driven displacement. Even while national governments aim to reduce climate threats to agriculture, the international community should help promote the growth of alternative, less climate-vulnerable employment options. Donors can fund vocational training and other skills-development programs to make the region’s millions of young people more marketable for urban-centered jobs in telecommunications, electronics, and retail, among others—at critical, high-growth-potential fields in a rapidly urbanizing region.

- Empower non-federal authorities to better tackle climate-induced displacement risks. In much of South Asia, domestic policy is a non-federal matter. However, state/provincial authorities often lack the requisite expertise and resources for this work. International donors can provide or sponsor training or other educational programs to bolster the ability of non-federal policymakers to tackle the admittedly overwhelming challenge posed by climate change and, by extension, displacement. Support for local-level authorities is particularly essential. In some South Asian nations, decentralization reforms have brought
recent travails of Rohingya refugees are instructive—and a sobering reminder of the complex and tragic nexus between conflict, displacement, and climate change.

In 2017, military forces in Myanmar staged a brutal crackdown on the Rohingya, a heartbreakingly marginalized religious minority. Hundreds of thousands were displaced, and they fled next door to Bangladesh. Since then, they have toiled in overcrowded refugee camps. However, in 2019, Dhaka announced its intention to relocate up to 100,000 of them to Bhashan Char—an isolated island that is a three-hour boat ride from Bangladesh’s mainland, and that is prone to sea-level rise, storm surges, and floods.49 Officials initially held back, following an outcry from human rights activists, but in May 2020 nearly 300 Rohingya attempting to enter Bangladesh by sea were taken to the island. Officials cited the need to reduce the risks of COVID-19 infections within the Rohingya camps on the mainland.50

First the Rohingya were displaced by conflict. Now they are at risk of being displaced by climate. And yet, if the nearly 300 souls stranded on Bhashan Char—and the thousands more that could join them—are displaced again, they will have nowhere to go.

This ongoing tragedy illustrates the seriousness of the twin threats of climate change and climate-induced migration in South Asia. It also highlights the urgency with which governments in the region, with stepped-up international support, must act to help curb these threats. And it underscores the terrible and potentially deadly costs of failing to do so.

The author would like to thank Shruti Samala and Natalia Naveed for their research assistance.

GEO ENGINEERING
Intervention in the Earth System

The Geopolitical Challenges of Geoengineering and Geoengineering’s Challenge to Geopolitics

Oliver Morton

In 2006 the atmospheric chemist Paul Crutzen, one of the world’s most respected atmospheric scientists, published “A contribution to resolve a policy dilemma” in the journal *Climatic Change.* The policy dilemma was this: the burden of respiratory disease associated with particulate emissions from coal-fired power stations was appalling high, killing perhaps 500,000 people a year. Regulators planned to reduce this significantly by cleaning up power stations. As a result, anthropogenic sulphur emissions, then around 55m tonnes a year, would decline significantly over the coming decades.

As well as damaging people’s lungs, though, the aerosol particles which sulphur emissions produce in the atmosphere also reflect sunlight back into space before it can warm the Earth’s surface. The cooling due to such pollution, Crutzen estimated, was depressing the global temperature by up to one degree Celsius, offsetting a significant fraction of the damage being done by anthropogenic greenhouse gas emissions. Remove those sulphur emissions, and the world would heat up more quickly than if you kept them in place. The policy dilemma: actions to reduce harm in the short term by curtailing respiratory disease would increase harm in the medium term by unleashing the full impact of greenhouse gas warming.

Crutzen suggested that the loss in cooling when sulphur emissions into the lower atmosphere were reduced could be made up for by releasing sulphur into the stratosphere. Because sulphate particles last much longer in the rainless, snowless stratosphere than in the weather-riled lower atmosphere, the amount of sulphur needed would be small compared to existing emissions: just a million tonnes or so a year, well within the technical capacity of a small fleet of aircraft.

Crutzen’s paper paved the way for a growing interest in solar geoengineering: the use of technology to reduce the amount of sunlight that the Earth absorbs. And in the years since its release, researchers have used computer models to produce hundreds of papers modeling solar geoengineering’s climatic effects, technological
implementation, adverse impacts, and compat-
ability with notions of justice and democracy.

This climate model-based research shows that
solar geoengineering could never simply cancel
out anthropogenic temperature increases, let alone
other climate change impacts. If carried out with
stratospheric sulphur, for example, it would slow
down the ozone layer’s recovery from the damage
caus ed by industry in the second half of the 20th
century. It would also have a potentially profound
effect on the hydrological cycle. A world in which
all greenhouse warming after a certain date was
offset by solar geoengineering would experience
significantly less precipitation than one in which
there was neither greenhouse warming nor
geoengineered cooling.

However, all in all, the results of this research
have increasingly come to suggest that in a world
where greenhouse gas emissions peak some time
between now and mid-century and then dwindle—
which is to say, our current world—a solar
geoengineering program that offset a significant
fraction of the resultant warming could greatly re-
duce overall harm. The benefits of that moderating
effect would vary from region to region, but models
suggest that there may well be levels and patterns
of intervention where even the regions in which
the benefits were found to be lowest and/or the
harmful side effects highest would see little or no
net harm. “Showstoppers” that cast doubt on the
whole idea have, from the point of view of natural
science, failed to appear.

A (Political) Science Experiment

It has thus become commonplace within the
geoengineering research community to hold the
opinion that the most substantial risks posed
by solar geoengineering are not biogeophysical,
but matters of international relations. These risks
can be divided into systemic risks, which are
geopolitical in the broad sense, in that they bear
on international processes of decision-making,
and scenario risks, which are geopolitical in the
more specific sense of depending immediately
on matters of territory and military capability.

The major systemic risk is the erosion of mitigation
efforts. This does not depend on anyone actually
doing solar geoengineering, just on people being
willing to talk about and research the possibility.

The insidious nature of the risk is illustrated by
the role in recent climate negotiations of solar
geoengineering’s speculative sibling, carbon
geoengineering—the active removal of carbon
dioxide from the atmosphere.

It was by tacitly invoking carbon geoengineering
that the Paris Agreement of 2015 was able to
succeed where previous climate diplomacy had
failed. Previous climate negotiations had been
based, implicitly or explicitly, on the idea that the
eventual level of global warming would depend
on the total amount of long-lived greenhouse gas
emitted into the atmosphere. A given tempera-
ture limit would imply a specific total amount of

emissions reductions required and the rate at
which emissions should be cut. Major emitters,
however, were not able, or willing, to promise
cuts on the scale needed for the then widely
accepted limit of a two degree temperature
increase.

Paris squared this circle in two ways. The
more obvious was that it set up a “ratcheting
mechanism” whereby policies to cut emissions
would get more and more ambitious over time.
The second and subtler method was to open
up the possibility of “negative emissions.” The
stable level of long-lived greenhouse gases
that it imagined for the second half of the 21st
century would not be brought about solely by
an absence of anthropogenic emissions, but
by the advent of technologies or policies that
remove already-emitted carbon dioxide from the
atmosphere. If positive and negative emissions
are in balance, you have the world of “net-zero”
emissions that the agreement talks about. If
negative emissions come to predominate, you
have a world of reducing greenhouse gas levels
in which temperature will, after a certain degree
of lag, actually come down. Invoking this sort of
carbon geoengineering allows one to draw lines
on graphs that connect today’s modest emission
cuts with stable and acceptable temperatures
at the end of the century.

There are various plausible carbon-geoengineer-
ing technologies by means of which this might
be done.2 But at present they do not exist at any
real scale, and efforts aimed at their creation and
widespread acceptance are, on a global scale,
nugatory. The Paris Agreement’s squaring of modest
emission-reduction pledges with ambitious
future-temperature targets thus rests on what is
in effect a fantasy (abet one that could, in principle,
be actualized). To make matters worse, the

fantasy is fungible. Once you have allowed the
idea of negative emissions into your thinking it
is always possible, at the margin, to trade a little
less emissions-reduction today for a little more
negative emission tomorrow. Over time, there is
nothing to stop a little from becoming a lot. The
promise of geoengineering becomes a license for
procrastination.

This is true regardless of whether that promise
is made sincerely or cynically, or whether the
geoengineering in question is carbon or solar.
Indeed, the fact that both solar geoengineering
and carbon geoengineering decouple climate
outcomes from cumulative emissions is one of
the reasons why I choose to see them as similar
enough to carry the same name, despite the
depth differences in the way they act and the
effects they can produce. Treating either solar
or carbon geoengineering as a medium-term
possibility reduces the incentives for near-term
emissions reduction.

This problem has been much discussed in the
solar-geoengineering literature, often under
the rubric of “moral hazard.” The way in which
the negative-emissions discussion has evolved
before and after Paris strongly suggests that the
risk is real: building the assumption of solar
geoengineering into the policy framework really
can be used to legitimize and valorize levels of
effort not otherwise remotely sufficient to meet
stated climate goals.

In demonstrating this, though, Paris may also
have shown that the risk no longer matters. We
already live in a world in which people do too little
about climate change, in part because they are
relying on notional future geoengineering to bail
them out; it is just that the non-existent safety
net is being provided by carbon geoengineering
rather than solar geoengineering. It is not obvious that more serious discussion of solar geoengineering would further undermine current action on climate change.

Invidious Intervention?

Actual solar geoengineering, though, undoubtedly would. This is in part because the biogeoophysical effects of solar geoengineering are strongly scenario dependent. Imagine a deployed solar-geoengineering strategy aimed at limiting warming to two degrees while ensuring that no country or region faces unacceptable hydrological distress. The amount of cooling required will depend on the emissions pathway the world follows. If the act of starting the intervention changes the way nations act with respect to emissions, that pathway changes in turn—and thus so does the amount of solar geoengineering required. It is easy to imagine such a strategy soon finding itself in a world where its purported aim—capping temperatures but not causing hydrological distress—is no longer achievable. At this point the interests of nations in different regions, once plausibly aligned, diverge.

This is a special case of a general geopolitical problem: strategic stability. As solar geoengineering research quickened post-Crutzen, it was widely assumed that even if a strategy’s net benefits were large, the workings of the climate system would ensure that they were sufficiently heterogenous that some regions would end up worse off even if most others benefited—in other words, that there would be winners and losers. Yet one of the most striking results to come out of solar geoengineering research has been the discovery that, in models, there seem to be strategies in which a moderate amount of solar geoengineering leaves no nation worse off than it is today.

There is a catch. A strategy in which no region loses will also be one in which some regions do less well than they would under some other strategy. Some nations will thus always have an interest in strategy change. This builds an asymmetric instability into the system that will tend to increase the amount of solar geoengineering beyond that originally seen as optimal.

Imagine a world in which a consortium of nations is injecting aerosols into the stratosphere in order to provide an optimized effect acceptable to all. Now imagine that one of those nations decides, in the light of how things play out on the ground, it wants less cooling. Unless it can convince all the other nations to agree, it is stuck; if it stops emitting aerosols unilaterally, the other nations can easily make up the deficit, keeping to the originally specified strategy. Reducing cooling (i.e., increasing warming) will always require consensus.

More cooling, though, does not. If Nation A wants more cooling, it merely needs to inject more aerosols. If the other nations reduce their contributions to try and keep things on an even keel, Nation A can decide to inject even more. If all the other nations stop injecting, Nation A can take on the whole task. This is what Marty Weitzmann and Gernot Wagner have called the “free driver” problem.

The amount of solar geoengineering carried out will be a function of the level of intervention preferred by the nation with the greatest desire for cooling and the willingness of other nations to impose a price for that cooling that the first nation finds unacceptable.

A New Geopolitical Phenomenon

Thus solar geoengineering depending on stratospheric aerosols offers a clear possibility of international conflict even among nations that, in principle, are all open to its deployment. This is because solar geoengineering is a global geophysical phenomenon subject to some level of national political influence—a class of phenomenon hard to embrace within current conceptions of geopolitics. The “geo” of geopolitics is, after all, fundamentally that of the geographer’s map; a heterogeneous two-dimensional surface divided up among players whose interactions are encouraged or constrained by their relative sizes and positions. The “geo” of geoengineering is the geo of geophysics and biogeochemistry; an earth system in constant flux. This Earth system is in some ways deeply non-local; carbon dioxide emitted from any given source is like that from every other, for example. In other ways it is defi- antly local; the climatic state, and direction of change, differ from place to place.

A geopolitics, and system of international relations, conceived on the basis of nations that hold territories, is a poor fit to the political demands of a unified planetary system defined by the flows of energy and material through unending climatic and biogeochemical cycles. Many of the problems that have dogged the development of climate diplomacy can be seen as direct or indirect consequences of that poor fit. But they are not necessarily perceived as such, because the concepts through which the problems are discussed—the natural climate, the economy—do not feel fundamentally new.

Solar geoengineering, on the other hand, is new: a global geophysical phenomenon subject to some level of national political influence that does not exist in any form today, but could tomorrow. It thus sheds a unique light on the degree to which a geopolitics that grew up in a world of great powers can be reconciled with an Earth system of planet-spanning flows, and on the challenges that such a reconciliation will entail. Solar geoengineering raises problems within geopolitics. It also brings into focus problems with the whole idea of geopolitics.
In the summer of 2020, border tensions between India and China and the future of their bilateral relations came to dominate the news cycle in the subcontinent—or at least the space left over by the coronavirus pandemic. Although foreign policy experts are right to discuss the boundary dispute at the core of India-China tensions, they must not ignore the many other potential sources of tensions. One of the most significant is the probable implementation of large-scale geoengineering projects.

As emissions reductions prove elusive, major emitters are increasingly looking for other solutions to reduce global warming. Both China and India are exploring carbon dioxide removal or negative emission technologies. More controversially, they are also studying solar radiation management, a technological domain in which China is far ahead of India and the risk of bilateral disagreement is extremely high. The foreign policy community needs to incorporate climate change issues—especially geoengineering—into foreign policy.

Geoengineering’s Potential to Heighten Tension

The emergence of ambitious geoengineering technologies could exacerbate tensions and even hostility between nations such as India and China. Without regulation, one country’s efforts could affect other countries. While China has not yet shown signs of “unilaterally" deploying geoengineering projects on the ground, the scale of its weather modification and other massive engineering projects, including mega-dam projects (such as the Three Gorges), suggests China is willing to deploy large-scale geoengineering schemes to tackle the impacts of climate change and achieve its Paris targets.

Take, for example, China’s large-scale weather modification project, Tianhe, or Sky River—a cloud seeding geoengineering project. The project has potential security implications for neighboring countries, including India, and other South and Southeast Asian countries.
Tanhe’s climate geoengineering venture aims to manage drought-like conditions in the northern parts of the country that receive less rainfall and are seeing declining water levels in its rivers. With the project, China seeks to blast silver iodide particles into the atmosphere using fuel-burning chambers in order to transfer more water from the Yangtze River basin to the Yellow River basin via water vapor that becomes rainfall.

In order to transfer more water from the Yangtze River into the atmosphere using fuel-burning chambers in water vapor that becomes rainfall, the project could further heighten concerns about regional climate. These variables could raise the importance of information and data sharing (transparency) that is at times held hostage by geopolitical dynamics, as was the case during the 2017 Doklam military standoff between India and China, when owing to “technical” reasons, the latter did not share water flow data with the former.

Just how solar geoengineering may affect regional climate and weather patterns is unclear, but the impacts are potentially significant. Climate change already seems to be affecting the Indian Summer Monsoon Rainfall (ISMRF) that is the lifeline of all the South Asian economies. Studies have attributed a decline in the total rainfall and a concurrent rise in the magnitude and frequency of extreme rainfall events to climate change in many parts of India and other South Asian countries.

A few scientific studies have also pointed out that using techniques such as injection of stratospheric aerosols to cool the planet (the effect is comparable to that of a volcanic eruption) may reduce rainfall in India and China and may affect the ozone layer too, by thinning it. The deployment of such initiatives in the region could therefore unleash far-reaching repercussions for ecological, livelihood, economic, social, and human security.

The Geopolitical Divide Between the Haves and Have-NotS

The consequences of a lack of safeguards on unregulated geoengineering could be disastrous, particularly for developing countries that do not possess enough resources to undertake research and development (R&D) in the field, deploy such schemes on a large-scale, or deal with their unintended outcomes. Geoengineering research, especially solar geoengineering, both in terms of technological innovation and futuristic governance frameworks, continues to be dominated by the Global North (primarily North America and Western Europe).

These dynamics could exacerbate the geopolitical divide between the haves and have-nots or winners and losers, an asymmetry in the international system that developing countries have long contested. Yet, scientists have spoken about the need to implement geoengineering not just to prevent a future climate emergency, but also to create “equity” in connection with the possibility of reducing surface temperature faster than mitigation, in a way that will be comparatively cheaper than adaptation, and as a moral obligation to save the global poor.

The Military Factor

Wherever militaries are involved, we should proceed with caution. In some countries, the military may already be playing a role in developing these technologies. If and when the technologies are deployed on a wide scale, militaries may be involved in various aspects of the process, including the protection of project sites, R&D, and potential militarization/weaponization (to have an upper hand in times of crises).

Tanhe, in fact, is being aided by the state-owned China Aerospace Science and Technology Corporation, a “major space and defense contractor,” using “cutting-edge military rocket engine technology” and “satellite network.” The involvement of the military in an already geopolitically tense region without appropriate safeguards could lead to further opacity, mistrust, disagreements, and conflict over the use of such technologies.

Some argue that geoengineering governance research should be free of regulations that may politicize the debate, delay effective means of arresting the effects of climate change, and even lead to a potential moratorium on the use of these technologies. Others argue that there is not enough scientific evidence to prove the risks associated with geoengineering.

This is precisely why we cannot wait for perfect information to act, and we may have to adopt a cautious approach that looks to diplomatic efforts to deal with the effects of these technologies, if not impose a ban on them.
countries should cooperate. First, they should reach a common understanding on the role of climate geoengineering as a “plan B” for solution to global, regional, and national climate governance. Although most countries, including China, the United States, and India, have ratified the Convention on the Prohibition of Military or Any Other Hostile Use of Environmental Modification Techniques (ENMOD), establishing “compliance” and liability can be tricky in the event of perceived (or claimed) benign use of climate geoengineering, coupled with the existence of longstanding militarized border zones. According to ENMOD, states must “undertake not to engage in military or any other hostile use of environmental modification techniques having widespread, long-lasting or severe effects as the means of destruction, damage or injury to another State party.” This is perhaps the most relevant legal framework that could cater to the security implications of climate geoengineering, albeit only in “hostile” scenarios. It is outdated and does not address “peaceful” modification techniques. In the present situation the uncertainties have multiplied, with the COVID-19 pandemic, geopolitical tensions, and climate change complicating existing challenges. With the pandemic, although there are never-ending calls for a “green recovery”—to build back better”—some speculate that many renewable energy projects are likely to be delayed. In such a scenario, countries will be more ambitious about pushing ahead with geoengineering projects to achieve their climate objectives. Richer countries may set aside ethical concerns with regard to developing countries and pursue a technocratic solution to climate change. In this context, the need for better governance mechanisms and tools, and the role of foreign policy stakeholders, especially those who engage in climate diplomacy, will be paramount, including in regions such as South Asia.

Endnotes

3. The National Academies. Committee on Developing a Research Agenda and Research Governance Approaches for Climate Intervention Strategies that Reflect Sunlight to Cool Earth – International Briefing to U.S. NAS Study Committee. Vienna. https://www.nap.edu/ebooks/

The term *geoengineering* (or *climate engineering*) has long been used as a catch-all for any potential large-scale technological intervention in earth systems to tackle or address climate change. The term has, though, largely fallen out of favor. Instead, scientific and policy discussions tend now to distinguish more carefully between two distinct types of potential large-scale climate intervention:

1. **Carbon removal** (or *carbon dioxide removal* or *negative emissions technologies*) approaches could draw carbon dioxide from the atmosphere and direct the carbon dioxide to long-term storage or to beneficial use. Climate models now suggest large-scale carbon removal will be a necessary component of the global climate change response. Biological pathways for carbon removal include the planting of trees, the managing of farmlands for carbon uptake and storage, or, perhaps, depositing iron filings in the ocean to promote blooms of carbon-inhaling phytoplankton. More speculative chemical and technological methods include direct air capture (capturing carbon dioxide directly from the open air and then injecting it underground) and enhanced weathering (speeding up the natural processes that turn atmospheric carbon into rock formations).

2. **Solar radiation management** (or *solar geoengineering* or *solar radiation modification* or *albedo modification*) could cool the planet by reflecting or refracting a small amount of incoming solar energy. Proposals include stratospheric aerosol injection, marine cloud brightening, or ground-level albedo enhancement. This briefing note focuses on the science and governance requirements of solar radiation management approaches.

Carbon removal and solar radiation management offer different and perhaps complementary ways to tackle climate change, in conjunction with reducing greenhouse gas emissions and adapting to a changing climate.

Solar Radiation Management

Simon Nicholson

Solar radiation management (SRM) is an idea born of desperation. It is also an idea that demands consideration as the global community grapples with an ongoing and accelerating climate crisis. This briefing note defines and describes SRM, discusses why SRM is under consideration by the scientific community, policy actors, and representatives of civil society, and looks at what effective governance of SRM requires. SRM raises big questions for the foreign policy community: Should SRM technologies be developed? Should they ever be used? Who decides based on what kinds of imperatives or criteria? Who would have control of operation and intended outcomes? This note makes the case that even though SRM approaches are still at the discussion stage, the building of a governance architecture around SRM should begin now.

SRM is a speculative form of climate change response. SRM schemes, should they ever be developed and used, would operate by reflecting some amount of incoming solar energy back into space before that energy can be trapped by the gases that produce the greenhouse effect. Think of SRM like a reflective shield, artificially providing regional or global cooling.

In Depth

BOX 1:

The Language of Geoengineering, Carbon Removal, and Solar Radiation Management

The term *geoengineering* (or *climate engineering*) has long been used as a catch-all for any potential large-scale technological intervention in earth systems to tackle or address climate change. The term has, though, largely fallen out of favor. Instead, scientific and policy discussions tend now to distinguish more carefully between two distinct types of potential large-scale climate intervention:

1. **Carbon removal** (or *carbon dioxide removal* or *negative emissions technologies*) approaches could draw carbon dioxide from the atmosphere and direct the carbon dioxide to long-term storage or to beneficial use. Climate models now suggest large-scale carbon removal will be a necessary component of the global climate change response. Biological pathways for carbon removal include the planting of trees, the managing of farmlands for carbon uptake and storage, or, perhaps, depositing iron filings in the ocean to promote blooms of carbon-inhaling phytoplankton. More speculative chemical and technological methods include direct air capture (capturing carbon dioxide directly from the open air and then injecting it underground) and enhanced weathering (speeding up the natural processes that turn atmospheric carbon into rock formations).

2. **Solar radiation management** (or *solar geoengineering* or *solar radiation modification* or *albedo modification*) could cool the planet by reflecting or refracting a small amount of incoming solar energy. Proposals include stratospheric aerosol injection, marine cloud brightening, or ground-level albedo enhancement. This briefing note focuses on the science and governance requirements of solar radiation management approaches.

Carbon removal and solar radiation management offer different and perhaps complementary ways to tackle climate change, in conjunction with reducing greenhouse gas emissions and adapting to a changing climate.
Setting aside for the moment potential negative or unintended consequences, increasing the reflectivity of planetary features at any altitude could achieve the cooling goal of SRM. At ground and sea level, SRM proposals have included using gigantic pumps to introduce microbubbles into reservoirs or other bodies of still water, the genetic engineering of crops to make leaves shinier, and the spreading of reflective films on the ocean’s surface or on vulnerable ice flows. The two most-discussed proposals for SRM, outlined in the next section, are both options that would operate up in the atmosphere. Any of these options would increase what is known as the Earth’s “albedo”—the reflectiveness of the planet—sending more solar radiation back into space before it can interact with greenhouse gases.

The emerging science and technology of SRM is complicated enough. SRM is not, though, just a technical enterprise. It’s a big complex entanglement of technological and scientific ideas, promises, and understandings interacting with social forces and actions. Some see technological developments as a way to bypass messy political processes. That’s not really the case. SRM is not a way to get around climate politics; SRM is part of climate and broader politics. Consideration of SRM will necessarily take place in the context of the rest of the global effort to understand and respond to climate change. With this in mind, the world will be better placed in 2040 and beyond to take action if investment in how to govern SRM is well underway in 2020. SRM has world-altering potential. Its governance needs to be early, anticipatory, and flexibly attentive to the range of different possibilities that lie just over the horizon.

Current SRM Proposals

Ground-level SRM options such as more reflective crops or white roofs on buildings could provide some localized cooling and, if implemented at a large enough scale across multiple locations, could even have a modest impact on global heating. Higher-leverage proposals that could more readily produce regional or global cooling would operate in the atmosphere. Marine cloud brightening would involve introducing saltwater particles from the ocean up into the cloud layer, with the hope that this would lead to the short-term appearance of new and whiter clouds. These artificial or newly whitened marine clouds would mimic the “ship tracks” that appear above ocean-traveling ships. In Australia, marine cloud brightening is one of more than 40 proposals being looked at as part of an AUS$150 million government-backed research enterprise aimed at reducing heat impacts on the Great Barrier Reef. A trial in early 2020 used a modified turbine with hundreds of nozzles to spray salt crystals skyward as a proof of a potential particle delivery system. Future tests are planned to test atmospheric and ocean surface impacts. A project based in Washington state has set out its own research plan and is seeking US$40-50 million over five years.

A second proposal, stratospheric aerosol injection, would involve throwing reflective particles into the upper atmosphere. The particle might be sulfur dioxide, or, in some formulations, calcium carbonate or perhaps an engineered nanoparticle, with delivery most likely by a fleet of high-flying aircraft. This activity would replicate the cooling effect of a volcanic event. The eruption of Mount Pinatubo in the Philippines in 1991 produced a plume of gas containing some 20 million tons of sulfur dioxide, some of which was forced to high altitudes. The Earth’s average temperature fell by around 0.5 degrees Celsius for the 18 months that the sulfur dioxide particles remained aloft. A team at Harvard University has begun early-stage investigations that could, in time, inform whether humans could replicate such a feat.

One paper has suggested that a program that would ramp up to a cooling impact of around 0.3 degrees Celsius could be achieved for about US$2.25 billion per year over an imagined 15 year lifespan. This kind of price tag makes stratospheric aerosol injection look a good bet in brute economic terms. Such cost estimates are scrambled, though, when one tries to take account of unintended or potential downside consequences. Working out whether any SRM proposal is a good idea is dependent not just on feasibility and direct cost estimates, but also on questions about whether and how any deployment can be governed, how costs and benefits are likely to be distributed, and what SRM development would mean for other needed efforts to respond to climate change.

Stratospheric aerosol injection would, if utilized, have a global cooling effect, though computer modeling suggests it would not impact all places in the same way. Optimistic forecasts based on limited and carefully controlled deployment of stratospheric aerosols suggest that every region of the world would see some climate benefit, with some regions seeing more benefit than others.

FIGURE 1: Illustration of Sample Solar Radiation Management Proposals

Source: Graphic prepared by Isabelle Rodas for Nicholas Institute: State of the World 2013.

1 The fact that increasing albedo or planetary brightness at any altitude would cool the planet has to do with the manner in which solar energy interacts with greenhouse gases in the atmosphere. Incoming solar radiation enters the Earth’s atmosphere in short wavelengths. Some incoming shortwave radiation is reflected back into space by the cloud layer or particles in the atmosphere. Some makes it through to the Earth’s surface, where it is absorbed and then re-radiated to space in infrared wavelengths. This outgoing longwave radiation is the greenhouse effect. Without this greenhouse effect, the Earth’s surface would be around 33°C colder than it is today. Some incoming shortwave radiation is trapped by greenhouse gases in the lower atmosphere, with increasing concentrations of greenhouse gases leading to greenhouse warming. Increasing solar radiation management (SRM) has the potential to offset some human-induced warming by reflecting solar energy back into space before it can interact with greenhouse gases.

2 This figure of 0.5 degrees Celsius is notable, given that the atmosphere has warmed a little more than 1 degree since the beginning of the Industrial Revolution and the goal of the Paris Agreement is to limit warming to no more than 2 degrees of warming above pre-industrial averages, aiming to limit warming to 1.5 degrees.

3 These cost estimates include aircraft development and production expenses spread across the fifteen-year life of the imagined program.
others. Other forecasts, however, suggest that this kind of SRM could upset rainfall patterns, amplify or change seasonal cycle, deplete stratospheric ozone, and potentially harm biodiversity. Much would depend on the particular kind of aerosols deployed, what quantities are used, where they’re deposited, and over what timeframe. Marine cloud brightening, by contrast, could have regional application to slow Arctic sea ice melt or protect against coral bleaching. Small-scale ground level SRM efforts could be deployed entirely within one country, while atmospheric approaches would depend upon—or would spill over to—the atmospheric commons. This is all to say that while SRM approaches have in common that they would reflect solar radiation, there are some big and important differences in terms of what various SRM approaches entail and require in governance terms.

Why is Solar Radiation Management on the Table?

SRM could offer, by one well-known formulation, a “fast, cheap, and imperfect” approach to slowing or offsetting temperature rise caused by greenhouse gas emissions. SRM is fast in the sense that deployment of an SRM approach would begin working immediately to reduce temperatures and it is cheap by the measure of anticipated direct costs. SRM is also imperfect, though, in that it does very little to address the underlying problem of the buildup of greenhouse gases in the atmosphere (or in the oceans, where atmospheric CO₂ is driving ocean acidification) and comes with a range of attendant risks.

Said differently, SRM is under consideration by scientists and policymakers because there is very little scientific doubt that using SRM approaches would cool particular regions or the planet. Climate change is about far more than temperature increase, however, and the cooling would come with a range of challenges and downside risks.

If SRM is to be used, it must be utilized alongside traditional emissions abatement (mitigation), adaptation to climate change effects, and, perhaps, carbon removal (see Box 1 and Figure 2). This is a key punchline when it comes to SRM: SRM should only be considered a supplement to emissions abatement, never a substitute. In the formulation in the left-hand portion of Figure 2, SRM is used in a “peak shaving” fashion, to remove the peak from a climate damage curve for a period of time. This could buy time for emissions abatement and then the removal of CO₂ from the atmosphere using large-scale carbon removal schemes (also a speculative notion) to stabilize and ultimately reduce atmospheric greenhouse gas concentrations. SRM in this scenario would be gradually ramped up through time and then gradually phased out, with the length of time and maximum scale of deployment depending on a range of different factors. In the right-hand portion of the figure, by contrast, SRM is used all by itself in an effort to keep climate impacts under control. In such a scenario SRM would need to be ramped up to keep pace with rising concentrations of greenhouse gases in the atmosphere, with the downside that higher concentrations of SRM entail more risk.

SRM has made it onto the international climate policy agenda, though it remains contentious. In 2019, a proposed resolution on “Geoengineering and its governance” was advanced for consideration at the 4th United Nations Environment Assembly (UNEA-4) in Nairobi. The proposal called for a report or series of reports to be prepared by the United Nations Environment Programme (UNEP), assessing criteria to define SRM and carbon removal approaches, the state of existing science, and governance considerations. The proposal was ultimately withdrawn, in part because the U.S. delegation wanted to forestall any opportunity for international processes to impose restrictions on the kinds of research that might be pursued in the United States. The formal governance of SRM will likely be back on the agenda at UNEA-5 and in other upcoming fora.

Governing Solar Radiation Management

What, then, does governing SRM require? Governing SRM means steering between the good that could come from developing and utilizing SRM options and the potential hazards and harms that SRM options present. Governance in a case like this one is not just about trying to protect against risks. Focusing just on the worst-case scenarios for SRM gone awry or terrible uses of SRM approaches by the worst imaginable actors leads one immediately to demands for a moratorium or strict restrictions on even SRM research efforts. An evaluation of SRM governance needs to start with comparing the potential risks and benefits of SRM approaches with the risks associated with climate change trajectories absent the availability of SRM. That is, could SRM provide a good and manageable way to offset some climate change risks? The truth is that we, collectively, don’t yet know enough about SRM either in scientific or societal terms. We haven’t yet sorted through whether SRM approaches could work, as models and early
tests suggest they might; nor is it clear that people would accept SRM options and that governments and others could establish the rules and institutions needed to manage them. This means that, in addition to managing for risks and potential harms, effective governance of SRM is also about creating an appropriate enabling environment for critical, quality research; opening up space for the kinds of societal deliberations that need to be undertaken; and establishing transparency and information sharing mechanisms.

BOX 2: Limited and Fragmented Formal Governance of SRM

At present, there is no single present or planned international regime that has taken up the governance of SRM. There exists, instead, a patchwork of relevant rules and a range of different proposals.

There have been, to date, three international environmental regimes that have given explicit attention to SRM. These are:

1. The Convention on Biological Diversity (CBD): The parties to the CBD adopted decisions in 2010 and 2012 motivated by concern about potential negative impacts on biodiversity from climate-related geoengineering activities. Some have argued that the CBD decisions represent a de facto moratorium against SRM investigation or deployment. The decisions, though, are guidance rather than binding law, and they also explicitly call for and allow for various kinds of research activities attentive to and designed to help assess environmental risks associated with SRM.

2. The London Convention and London Protocol (LC/LP): The LC/LP establishes a regime covering the dumping of materials into the oceans. In 2010, parties to the LC/LP adopted a resolution on an “Assessment Framework for Scientific Research Involving Ocean Fertilization.” The assessment framework is designed to provide guidance on the monitoring of ocean iron fertilization experiments, which could remove carbon dioxide from the atmosphere. Ocean iron fertilization and SRM have often been brought together under the “geoengineering” umbrella, such that many read the LC/LP guidance as also applying to SRM approaches that involve putting materials into the oceans. In 2013, amendments were adopted designed to regulate marine geoengineering activities, where marine geoengineering was defined as “a deliberate intervention in the marine environment to manipulate natural processes, including to counteract anthropogenic climate change and/or its impacts, and that has the potential to result in deleterious effects, especially where those effects may be widespread, long-lasting or severe.” These amendments have not entered into force.

3. The Vienna Convention and Montreal Protocol: The parties to this regime to address human harms to the stratospheric ozone layer have taken some interest in SRM. This is because there is some concern that stratospheric aerosol injection, a type of SRM, could harm the ozone layer. Over recent meetings there has been a growing push to include consideration of SRM in an upcoming scientific assessment. It is unclear at this juncture whether this scientific interest might lead to an interest in rulemaking.

In addition, there are a number of other environmental regimes that could have bearing on SRM. These regimes are the Convention on Long-range Transboundary Air Pollution (perhaps relevant in the case of the spread of sulfate aerosols or some other particle in the atmosphere), the UN Convention on the Law of the Sea (perhaps pertinent in the case of positive or negative marine impacts from SRM testing or deployment), and the Environmental Modification Treaty (ENMOD – perhaps relevant if some particular use of SRM were deemed or seen as hostile).

A study published in 2020 by Susan Biniaz and Daniel Bodansky concluded that there is no obvious “one-stop shop” for SRM governance. The international climate change regime, with the UN Framework Convention on Climate Change at its heart, is an obvious place to site formal governance of SRM, but the authors contend that the agenda for parties to that convention is already packed and contentious. Nor is there another obvious international forum with sufficient scope and mandate. Biniaz and Bodansky instead weigh a range of potential existing institutions or regimes that could pick up important pieces of the SRM governance agenda: the Intergovernmental Panel on Climate Change, World Meteorological Organization, or similar for scientific assessment, and the UN Security Council or G7/G20 or a regional forum for policy decisions. Others have endorsed this polycentric or multi-nodal governance notion. SRM governance is needed. SRM governance does not, though, all need to be handled in one place, and for the foreseeable future fragmented governance of SRM is likely to remain the norm.
Right now, SRM is still an idea. There is some computer modeling and a handful of plans for early-stage scientific investigation into the efficacy of certain aspects of some SRM proposals, but there are no readily deployable SRM options. This means that in the near-term, governance of SRM means governance of SRM research. But even the mere mention of SRM research has garnered objections. Among the concerns (see also box 3 in *Governing Solar Radiation Management*):

- SRM could be sold by fossil fuel interests and others as a kind of get-out-of-jail-free card;
- SRM might distract elites or society from the essential work of emissions abatement;
- SRM could experience a kind of technological lock-in or elite capture, where early stage research efforts would drive inexorably towards use even if it proved a bad idea; and,
- Even medium to large-scale testing of some forms of SRM would amount to messing with ecosystems, with very limited knowledge and ability to control and account for the impacts of such interventions.

Yet, quashing research denies us the opportunity to better understand a potentially beneficial tool and prevents informed decision-making—including baseline knowledge about potential risks—which is an especially important consideration should a group ever decide to rush to SRM deployment.

When it comes to potential deployment of SRM approaches, much depends on the particular kinds of SRM under consideration. A stratospheric aerosol injection program, for instance, would have global climatological impacts but could be launched by a single country or even a sub-state actor. This could not be a covert undertaking. Other countries would certainly notice if, say, China or Russia or the United States launched (in a deployment scenario) thousands of flights each year into the stratosphere, and satellite-based LIDAR could detect major engineered changes in planetary reflectivity. Still, the fact that one country could go it alone suggests the need for coordinated action, even if only to ward off the potential for rogue actions.

Another much-discussed challenge with a global stratospheric aerosol injection deployment is the so-called “termination shock” that could accompany a sudden cessation of activities. If a global SRM scheme were implemented while greenhouse gas concentrations continued to rise, then all that SRM would be doing is masking and suppressing potential warming. A sudden halt of the SRM scheme would result in a sudden, and potentially severe, pulse of warming. All of this suggests that SRM with global impacts would need to be managed effectively and without interruption for a potentially very long time.

A regional or local SRM approach, such as marine cloud brightening or the spreading of ocean films, has different implications. Such programs would infiltrate the global commons and have spillover impacts on neighboring states, but risks would likely be more geographically constrained than with global approaches.

A further consideration, of particular importance for foreign policy discussions, concerns security or securitization dimensions of SRM. While some have speculated that stratospheric aerosol injection might be weaponized, this is likely an overblown concern. More pressing is that costs and benefits of SRM deployment would be unevenly distributed. Even models that suggest that nearly everyone would benefit from SRM indicate that benefits would be spread unevenly. These kinds of equity concerns could have implications for vulnerability to climatic pressures, including pressure points for migration, and public acceptance of SRM developments.

Another security implication has to do with how SRM could shape public and elite understandings of climate change. Climate change is now a diffuse challenge, in the sense that every person on the planet contributes to climate change through their actions (recognizing that some contribute significantly more than others and focusing individuals as the producers of climate change lets corporations and flawed systems off the hook). SRM could potentially provide a touchpoint by which a particular actor is identified (correctly or not) as the source of climatological effects. Suppose that Pakistan were to experience a major flooding event the year after India announced field tests of an SRM approach. Pakistan could blame India for the flooding *whether or not* a direct causal impact could be uncovered. In this way SRM would exacerbate and feed into existing interstate tensions. Some have gone so far as to suggest that SRM feeds a militarization of climate politics, intensifying a logic of surveillance and control, in ways that could undermine cooperative climate response efforts.

Looking Ahead - Prospects for Solar Radiation Management and its Governance

Imagine the world in 2040. The ice sheets covering Greenland are sliding more rapidly into the ocean even as much of the world is experiencing massive fires. Climate-induced migration and global food system disruptions are increasing. Decision-makers and communities all over the world are finally aligned to do something about climate change. Climate change is acutely felt and the need to address it, urgent. Where does SRM fit in?

- **Scenario 1:** There has been limited research on SRM to this point, but things are getting so drastic that every tool needs to be used. *Fly the planes.*
- **Scenario 2:** Research has shown SRM to be good in certain respects but bad in others. Keep SRM local and avoid risks associated with global options. *Brighten the clouds.*
- **Scenario 3:** The world has taken a back-to-nature swing and there’s widespread antipathy towards technological responses. *Shelve the plans.*
- **Scenario 4:** Jeff Bezos decides he’s going to sidestep all the talk and get the SRM job done himself. *Anoint the savior.*
Scenario 5: Governments have directed a multi-year coordinated research effort around stratospheric aerosol injection and have agreed upon rules to guide large-scale outdoor experimentation. Proceed with caution.

These scenarios begin just at the hint of any possible futures into which SRM will fit and that consideration of SRM will help to create. Bottom line: though potential use of SRM is some way off in the future, SRM demands consideration now. How decision-makers answer the "where does SRM fit?" question today will go a long way towards producing which of the paths outlined above, or others, we find ourselves on in 15-20 years.

Endnotes

Simon Nicholson

is an Associate Professor in the School of International Service at American University. He also co-directs the Institute for Carbon Removal Law and Policy and directs the Forum for Climate Engineering Assessment. Professor Nicholson’s research focuses on global environmental governance, global food politics, and the politics of emerging technologies, including carbon removal and solar geoengineering technologies. He is co-editor, with Will Burns and David Dana, of the forthcoming book Climate Geoengineering: Law and Governance (Springer).
In response, we are regularly asked the same questions. What are the risks and possible benefits? Are they a substitute—or a dangerous diversion—from the urgent need to reduce CO₂ emissions? Are there any existing international laws or bodies to govern them?

And last but not least, why are we drawing attention to this issue now, when agendas are packed and there are other competing priorities?

Having worked for eight years in former UN Secretary-General Ban Ki-moon’s climate change team, I am familiar with these kinds of concerns. For many senior policymakers, this is the first time they’ve had a conversation about emerging climate technologies, a topic that raises profoundly difficult questions about risk management, ethics, international security, and sustainable development.

But the consequences of our present course are also extremely serious. Despite a temporary drop in CO₂ emissions during the pandemic, scientists say we must reduce global emissions to net zero and then net negative if the world is to meet the Paris goal of limiting temperature rise to 1.5°- 2°C above pre-industrial levels by 2100.

How can the world reduce climate risks in a way that is safe, inclusive, and fair? And what role can governance play in reducing the specific risks posed by solar radiation modification, were it ever to be used? This is a new type of challenge, and it’s not clear we are ready to meet it.

What Are Emerging Climate-Altering Technologies?

Any discussion of technologies that would intentionally alter the climate must begin with a recognition that our “business as usual” emissions pathway leads to disaster. National pledges made thus far under the Paris Agreement fall significantly short of what is needed.

While the long-term consequences of COVID-19 are unclear, the world appears to be hurtling toward a catastrophic 3-4°C temperature rise by 2100—twice the level set by the Paris Agreement. This would mark the end of civilization as we know it within eighty years, easily the lifespan of someone born today. Seen from any angle—environmental, economic, geopolitical—climate change could have destructive global impacts far greater than the current pandemic.

It is in this context that some scientists, business, and policymakers have begun exploring a range of new approaches and technologies to supplement existing climate response tools. These include nature-based approaches, such as enhancing soil carbon content or restoring forest ecosystems to remove excess CO₂ from the atmosphere and store it, as well as technical methods that would directly capture CO₂ from the atmosphere.
Solar radiation modification is perhaps the most controversial of these emerging technologies. It has the potential to provide quick, tangible benefits, but it also poses potentially serious risks. It includes ideas that would intentionally alter the climate by creating brighter clouds at sea or spraying reflective particles into the stratosphere.

These technologies would not address the anthropogenic causes of climate change, but rather address a key symptom of climate change—temperature rise—by reflecting sunlight into space to rapidly cool the planet. One particular technology—stratospheric aerosol injection—could potentially reduce global temperatures very quickly (within months), according to computer models, potentially altering our climate, the more we will all pay in terms of increased risks.

In short, the longer the world delays sorting out how to govern technologies that would intentionally alter our climate, the more we will all pay in terms of increased risks.

The time to anticipate risks and develop governance is now, before some actor—state or non-state—unilaterally decides to deploy solar radiation modification technologies that have global impacts. By any measure, this is a timely investment in a safer future.

Why Governance and Why Now?

Perhaps the greatest risk concerns governance—or rather, the present lack thereof. Governance is about far more than governments, rules, and regulations. It requires interlocutors from across all sectors of society, both the powerful and the marginalized, coming together to discuss, learn, share knowledge, and take decisions at multiple levels. And it must include those most affected by climate change—including those who would be most impacted by any potential use of solar radiation modification. Governance also embraces deep ethical issues regarding legitimacy, decision-making authority, and inter-generational equity, among others.

There are currently no comprehensive international governance frameworks for solar radiation modification. Until recently, discussions about these emerging technologies have been limited to a small community of scientists. In fact, the vast majority of policymakers, and their advisors, around the world do not know enough about these technologies to be aware of their challenges, including why they need to be governed. This poses unacceptable risks to current and future generations.

Some believe that talking about these technologies may reduce incentive for the urgent and essential task of reducing global emissions, thus creating a “moral hazard.” While this is a valid concern, C2G believes the greater risk is in ignoring or postponing a discussion about technologies such as solar radiation modification. We do not have the luxury of time. The COVID-19 crisis has made it abundantly clear that when it comes to global challenges, there is a very high cost to waiting—waiting to prepare, to mobilize key actors, and to develop governance at multiple levels to mitigate risks.

In short, the longer the world delays sorting out how to govern technologies that would intentionally alter our climate, the more we will all pay in terms of increased risks.

The time to anticipate risks and develop governance is now, before some actor—state or non-state—unilaterally decides to deploy solar radiation modification technologies that have global impacts. By any measure, this is a timely investment in a safer future.

Laying a Foundation for Governance

C2G, a foundation-funded initiative, was created in 2017 to help minimize these risks by catalyzing governance conversations with global policymakers and their advisors, as well as with non-state actors. This mission—to catalyze the creation of effective governance for climate altering technologies—is unique.

Over the past few years, C2G has broadened the conversation on climate-altering technologies from the academic and research community to the policy world. It does not aim to determine the outcome of these discussions or provide answers. Rather, C2G takes a broad, risk management approach. In a rapidly warming world, C2G encourages policymakers to consider both the risks of action—and inaction—with respect to any potential climate intervention.

Its role is to ask critical questions, and to catalyze inclusive and well-informed discussions in order to fill governance gaps, both nationally and globally. C2G is impartial regarding the potential use of any proposed climate-altering technologies or interventions. These are choices for society to make.

But make them they must—and soon.

In March 2020, Australian scientists, funded by the government, conducted an outdoor experiment aimed at protecting the Great Barrier Reef using marine cloud brightening—a form of solar radiation modification—governed under existing domestic laws.

A different outdoor experiment in the United States is under discussion, potentially paving the way for further development of stratospheric aerosol injection.

As climate impacts continue to worsen, there will be increased pressure on governments in both developed and developing countries to use additional tools beyond traditional mitigation.

1 C2G does not use the word “geoengineering” as it encompasses a wide variety of technologies and approaches that pose very different challenges. This can confuse, instead of contribute, to their effective governance and impede constructive discussions with policymakers. “Geoengineering” also contains an implicit assumption that it is possible to engineer the climate, which may play up the complexity of the earth system. Please see our blog on “What’s in a name?” Plaut, J. (2019, June 10). What’s in a name? Why we became C2G. C2G. http://www.c2g.net/whats-in-a-name-why-we-became-c2g/
Three Common Concerns from Policymakers

Since its inception, C2G has met with senior policymakers in scores of governments around the world. It has also met with senior officials across the UN system, and dozens of civil society organizations and faith groups. Much more learning is needed about the risks and potential benefits of these technologies—known and unknown—as weighed against the dangers of a warming world.

Overall, C2G’s message is clear: Difficult choices lie ahead. There are no risk-free options to address the climate crisis; every course of action has costs and trade-offs as well as potential benefits.

The risk of the world’s present course is simple: Society-wide transformational changes to decarbonize the global economy are urgently needed. But the speed and scale of action we see thus far falls far short. And the current leadership of the world’s largest emitting countries does not invite optimism.

At the same time, new ideas to tackle our crisis bring major risks of their own. To that end, governance for solar radiation modification should be developed as soon as possible and set within the context of an overall climate response.

In our conversations with global policymakers, we sense a growing recognition of the need for a robust science-society-policy dialogue, starting now. We also hear three common concerns:

1. Decision-making authority: Whose finger is on the global thermostat? Who decides to use—or not use—technologies with planetary impacts? On what basis, and under what process?

This goes to the heart of legitimacy and decision-making authority in a multilateral system already under great strain.

At present, there is no clear answer to these questions under existing international law. There is no existing institution uniquely equipped to address all the governance challenges raised by stratospheric aerosol injection. Nor is there currently an appetite for creating new institutions. Some have argued that a polycentric approach might serve best under present circumstances.

2. Linkages with other issues: How would solar radiation modification affect the Sustainable Development Goals (SDGs)?

Much more research is needed, but clearly there could be significant impacts—both positive and negative—on health, food, water security, and biodiversity.

Another concern is solar radiation modification and its implications for global security. Some of the impacts of stratospheric aerosol injection could create global winners and losers (or be perceived to do so), thus potentially triggering conflicts. Ungoverned deployment of this technology could cause serious geopolitical instability without a multilateral mechanism for deciding if and when the technology were ever to be used. Regional use of marine cloud brightening could also provoke regional and/or international tensions.

3. The public’s response: As with other controversial technologies (GMOs, stem cell research, cloning), solar radiation modification raises profound questions about humanity’s relationship to nature, to the divine, and to future generations.

With more than 80 percent of the global population professing adherence to a religion, faith communities and ethical leaders could have a major influence on the public’s response to emerging climate technologies—and hence their governance. To be seen as legitimate, the governance of solar radiation modification will need to be accepted by them.
need to address deeply rooted values and beliefs about justice, equity, and inclusivity, among others.

Are we foolishly “playing God,” as some have said? Do we have the right to deliberately alter the one atmosphere we all share? How can young people have a say in these matters? After all, their generation—and future generations—will live with the consequences.

Others argue that solar radiation modification could rapidly reduce temperatures, thus benefiting some of the world’s poorest and most vulnerable communities who are located in areas already suffering from extreme heat under today’s 1.1°C rise in global temperatures. Imagine the grave consequences of a “business as usual” emissions pathway, where temperatures are anticipated to rise to an estimated 3°C or 4°C by century’s end. Significant swathes of the Earth might simply be uninhabitable for hundreds of millions of people.

Why Act Now?

Society will need to make difficult decisions in the next decade on how to respond to the climate crisis. This includes weighing the possible risks and benefits of any actions and agreements in regional and global intergovernmental processes, including, inter alia, the European Union, the African Union, the G7, and the G20.

As COVID-19 has reminded us, governance that anticipates a crisis, instead of merely reacting to one, can save lives. As a second lesson is learned, humanity’s oversized imprint on the climate and ecosystems will continue to have serious consequences, affecting not only sustainable development, but also global peace and security.

And yet, while science must be the evidence base for decision-making, ethics and values are at the heart of how these emerging technologies will be viewed by the public. Credible, impartial information and open dialogue are essential for building trust.

There remains a great deal of learning and outreach ahead. Nonetheless, the doors to serious discussions have been opened.

Given its global nature, governance of solar radiation modification will require global arrangements in the United Nations, building on actions and agreements in regional and global intergovernmental processes, including, inter alia, the European Union, the African Union, the G7, and the G20.

Endnotes

CYNTHIA SCHARGE is the Senior Strategy Director for the Carnegie Climate Governance Initiative (C2G). She previously served as the head of strategic communications and speechwriter on climate change for the United Nations Secretary-General’s Climate Change Support Team, she helped organize two global climate summits and was part of the Secretary-General’s team of advisers for the landmark Paris climate change agreement in 2015. Prior to this, Scharf worked in the field of humanitarian relief with the UN and international NGOs. She began her career as a journalist in Moscow. She received her MA from Georgetown University’s School of Foreign Service.
The Wilson Center, chartered by Congress in 1968 as the official memorial to President Woodrow Wilson, is the nation’s key non-partisan policy forum for tackling global issues through independent research and open dialogue to inform actionable ideas for the policy community.

The Wilson Center’s Environmental Change and Security Program explores the connections between environmental change, health, and population dynamics and their linkages to foreign policy and security.

adelphi is an independent Berlin-based think tank for applied research, policy analysis, and public policy consultancy on global environmental change. We inform policy processes and facilitate dialogue to foster transformative change towards a sustainable future.

The Climate Diplomacy initiative is a collaborative effort of adelphi and the German Federal Foreign Office. It aims at advocating climate change as a strategic priority in public diplomacy and addressing the nexus between climate change, conflict and peace.