The Changing Geopolitics of Critical Minerals and the Future of the Clean Energy Transition

Thursday, March 9
Comparison of Chinese, US, and EU critical resource lists

Overlapping
- Antimony
- Beryllium
- Cobalt
- Gallium
- Germanium
- Graphite
- Indium
- Lithium
- Niobium
- Rare Earths (16/17)**
- Tantalum
- Tungsten
- Vanadium
- Barite
- Bismuth
- Fluorspar
- Hafnium
- Magnesium
- Platinum Group (5/6)*
- Titanium
- Chromium
- Zirconium

Exclusive
- Aluminum
- Arsenic
- Cesium
- Manganese
- Nickel
- Rubidium
- Tellurium
- Tin
- Zinc
- Bauxite
- Borates
- Coking Coal
- Natural Rubber
- Phosphate Rock
- Phosphorus
- Silicon Metal
- Strontium
- Copper
- Natural Gas
- Petroleum
- Rhenium
- Selenium
- Uranium

Spotlight on select resources’ inclusion in regional critical resource lists

US
- Aluminum
- Cesium
- Manganese
- Nickel
- Zinc
- Platinum Group*
- Titanium
- Antimony
- Beryllium
- Cobalt
- Gallium
- Germanium
- Graphite
- Indium
- Lithium
- Niobium
- Tantalum
- Tungsten
- Vanadium
- REEs**

EU
- Silicon Metal
- Chromium
- Copper
- Selenium

China
- Promethium

* US excludes osmium
** US excludes promethium
Figure 1: Indicative Supply Chains of Clean Energy Technologies

Notes: DRC = Democratic Republic of the Congo; EU = European Union; US = United States; Russia = Russian Federation; China = People’s Republic of China. Largest producers and consumers are noted in each case to provide an indication, rather than a complete account.

Figure 2: Key Suppliers of 8 Technologies across Stages in Supply Chain