Skip to main content

Quantum computers promise a novel method of information processing much faster than "classical" computers. In 2019, a quantum computer completed in 200 seconds a task that classically takes 10,000 years. This exponential increase in speed has potential to upend encryption critical to national security, solve optimization problems for artificial intelligence and even advance research on undiscovered drugs. Speed means that computational tasks can be accomplished faster and more precisely than ever before. There are still significant research obstacles to overcome -- and supporting progress in quantum computing has become a $1.2 billion White House priority as well as an international policy focus

Quantum computing is inherently interdisciplinary, bringing together research from fields including computer science, physics and mathematics. Approaching this complexity requires a diversity of thought and talent. Whereas traditional computers store data in binary bits with a value of either 0 or 1, quantum computers leverage properties of atomic and subatomic particles, storing data in quantum bits called qubits. Qubits operate according to the principles of quantum physics, requiring researchers to apply high levels of math and physics, develop new methods of computer programming, and design novel hardware.  

That only scratches the surface of quantum, and breaking down its core concepts has turned into an epic endeavor -- one being tackled in games. Games are a particularly useful tool for understanding abstract STEM concepts, incorporating visual cues and active participation shown to help people understand quantum principles. The following examples are how some quantum experts are leveraging games for non-expert audiences, both in explaining the core concepts of quantum as well as crowdsourcing quantum research.

Exploring Quantum Principles

Hello Quantum

Hello Quantum, produced by IBM by Dr. James Wootton, teaches the player how to manipulate qubits and builds intuition on the logic to code programs for quantum computers. Designed for non-experts, the puzzle game combines the simplicity of Sudoku with the fun user interaction of Pinball. The goal is to match a specified pattern by changing the position and color of circles on a grid. The grid represents a pair of qubits and the color of the circles indicates their state, either “on” (white), “off” (black) or “random” (clear). As the player progresses, they discover not only different controls to manipulate qubits, but also the properties of qubit interactions -- like the uncertainty of qubits that have not yet been measured. Tutorials along the way offer explanations on the quantum computing principles.

(Free, Available for Android on GooglePlay and for iOS on the AppStore)

Quantum Cats

The worlds’ kittens have been captured and the Quantum Cats are on a mission to bring them back. In the angry-birds inspired game by the Institute for Quantum Computing at the University of Waterloo, the player slingshots cats imbued with quantum powers to break open boxes containing their kittens. Launching different members of the feline team into the air allows the player to explore quantum principles: Classy (the cat) hurtles through space following the laws of classical physics, Schrö can be in multiple places at the same time mimicking the ability of qubits in superposition to hold multiple possible values simultaneously, Digger can pass through barriers mimicking wave-like quantum behavior, and Fuzzy collides with random targets mimicking Heisenberg’s uncertainty principle. The contrast in the behaviors of the cats helps players learn about the differences between classical and quantum physics. In 2017, Quantum Cats was featured in the world’s first Quantum Game Cafe in Aarhus, Denmark, where visitors could enjoy their coffee while playing a variety of games related to quantum.

(Free, Available for Android on GooglePlay and for iOS on the AppStore)

Quantum Chess

Discover a whole new way to checkmate your opponent. Quantum Chess, designed in 2016 by Chris Cantwell in collaboration with California Institute of Technology’s Institute for Quantum Information and Matter, is a variation of chess that incorporates quantum moves. The game is intended to give the widest possible audience an intuitive understanding of quantum behavior while having fun. Quantum Chess is one of several projects that modify the rules of existing games, such as TiqTaqToe or Minesweeper, to incorporate quantum principles. In Quantum Chess, pieces can occupy multiple squares simultaneously or become entangled, tying their fates to one another. Quantum Chess gained millions of views in a National Science Foundation funded video featuring a quantum chess match between Stephen Hawking and actor Paul Rudd.

($9.99. Available on PC/Linus/Mac through Steam. Rating pending from the ESRB.)

Contributing to Quantum Research

The ScienceAtHome team at Aarhus University’s Department of Physics and Astronomy uses games to allow new audiences to participate in groundbreaking research, without needing a PhD. ScienceAtHome games such as Quantum Moves or Quantum Minds are citizen science projects, using the data generated by public game play to inform science experiments on quantum computing and machine learning.


Quantum Moves 2

You can now contribute to groundbreaking quantum research from your living room! ScienceAtHome’s Quantum Moves 2 allows players to control the movement of atoms at the core of qubits - from the comfort of their computer. The gamified citizen science project represents the wave-like behavior of the atoms as a sloshy liquid that moves according to quantum wave patterns. The player’s mouse movement simulates moving a laser “tweezer” to manipulate the wave into a target shape within a tight time limit. Each player’s solution in Quantum Moves 2 is sent to a team of researchers as data that they then use to optimize their actual manipulation of qubits to further research on quantum computing. The game not only collects data for research, but also introduces players to the strangeness of quantum mechanics “without any brutal equations”. Already, player efforts in the original Quantum Moves have led to breakthroughs by demonstrating that human decision-making can be superior to complex equations for solving challenges in quantum computing. 

(Free. Available on Mac and PC. Age rating unlisted.) 

Where will Quantum Games go next?

Educational games for quantum computing break down quantum principles so audiences without scientific backgrounds can explore the concepts in a fun environment, as well as involve them in research for quantum solutions. While the first quantum game was built only 3 years ago, the number and reach of quantum games is rapidly growing, gaining participation through Quantum Game Cafes, quantum hackathons, a quantum game course, and even features in the Davos 2019 World Economic Forum

Not all games need to be digital. In the game Bas|ket>ball, players act as qubits taking positions on a physical basketball court according to quantum principles. The game was developed to introduce principles of quantum physics to female high school students, and is now being developed with IBM. Game initiatives like Bas|ket>ball can be instrumental to increasing the diversity of people with access to quantum computing, and does not require access to computers.

Future concerns may also focus beyond baseline accessibility; games can be used for skill-development. In Hello Quantum, for example, players unknowingly execute the operations of Linear Algebra, a subject normally only accessible to college STEM majors, but foundationally to the coding for quantum computing. By combining the accessibility of a fun game environment, skill development through gamified problem-solving, and targeted outreach, future games can support the education pipeline for quantum computing.

Serious Games Initiative

The Serious Games Initiative communicates science and policy complexities through the world’s most dynamic medium: gaming.  Read more

Science and Technology Innovation Program

The Science and Technology Innovation Program (STIP) brings foresight to the frontier. Our experts explore emerging technologies through vital conversations, making science policy accessible to everyone.  Read more